Spaces:
Sleeping
Sleeping
File size: 3,285 Bytes
7c5d1d0 2750f6c 7a63bb7 a719e13 2750f6c 7c5d1d0 2750f6c 7a63bb7 2750f6c 7a63bb7 a719e13 7a63bb7 a719e13 7a63bb7 2750f6c 7a63bb7 a719e13 2750f6c a719e13 7a63bb7 2750f6c 7c5d1d0 2750f6c 7c5d1d0 2750f6c 7c5d1d0 7a63bb7 7c5d1d0 7a63bb7 7c5d1d0 7a63bb7 7c5d1d0 7a63bb7 7c5d1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import xgboost as xgb
import numpy as np
import pandas as pd
import joblib
import os
import warnings
# Suppress XGBoost warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")
# Load your model (automatically detect XGBoost or joblib model)
def load_model():
model_path = "best_model.json" # Ensure this matches your file name
if os.path.exists(model_path):
model = xgb.Booster()
model.load_model(model_path)
print("β
Model loaded successfully.")
return model
else:
print("β Model file not found.")
return None
model = load_model()
# Prediction function
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
average_monthly_hours, time_spent_company,
work_accident, promotion_last_5years, salary, department):
# One-hot encode the department
departments = [
'RandD', 'accounting', 'hr', 'management', 'marketing',
'product_mng', 'sales', 'support', 'technical'
]
department_features = {f"department_{dept}": 0 for dept in departments}
if department in departments:
department_features[f"department_{department}"] = 1
# Prepare the input with all 18 features as a DataFrame with column names
input_data = {
"satisfaction_level": [satisfaction_level],
"last_evaluation": [last_evaluation],
"number_project": [number_project],
"average_montly_hours": [average_monthly_hours],
"time_spend_company": [time_spent_company],
"Work_accident": [work_accident],
"promotion_last_5years": [promotion_last_5years],
"salary": [salary],
**department_features,
"satisfaction_evaluation": [satisfaction_level * last_evaluation]
}
input_df = pd.DataFrame(input_data)
# Predict using the model
if model is None:
return "β No model found. Please upload the model file."
try:
dmatrix = xgb.DMatrix(input_df)
prediction = model.predict(dmatrix)
return "β
Employee is likely to quit." if prediction[0] > 0.5 else "β
Employee is likely to stay."
except Exception as e:
return f"β Error: {str(e)}"
# Gradio interface
interface = gr.Interface(
fn=predict_employee_status,
inputs=[
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
gr.Number(label="Number of Projects (1 - 10)"),
gr.Number(label="Average Monthly Hours (80 - 320)"),
gr.Number(label="Time Spent at Company (Years)"),
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
gr.Dropdown(
['RandD', 'accounting', 'hr', 'management', 'marketing',
'product_mng', 'sales', 'support', 'technical'],
label="Department"
)
],
outputs="text",
title="Employee Retention Prediction System",
description="Predict whether an employee is likely to stay or quit based on their profile."
)
interface.launch()
|