File size: 4,497 Bytes
7c5d1d0
2750f6c
7a63bb7
a719e13
2750f6c
 
 
3e47c80
 
2750f6c
 
 
7c5d1d0
2750f6c
 
 
 
 
 
 
 
 
 
 
7a63bb7
2750f6c
 
3e47c80
2750f6c
 
3e47c80
2750f6c
7a63bb7
 
 
 
 
a719e13
 
 
7a63bb7
2d5fce6
a719e13
 
 
 
2d5fce6
3e47c80
a719e13
 
 
2d5fce6
a719e13
 
 
7a63bb7
 
2750f6c
 
 
7a63bb7
a719e13
2750f6c
b444f01
3e47c80
 
 
 
 
7a63bb7
2750f6c
7c5d1d0
3e47c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5d1d0
3e47c80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import xgboost as xgb
import numpy as np
import pandas as pd
import joblib
import os
import warnings
import shap
import matplotlib.pyplot as plt

# Suppress XGBoost warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")

# Load your model (automatically detect XGBoost or joblib model)
def load_model():
    model_path = "best_model.json"  # Ensure this matches your file name
    if os.path.exists(model_path):  
        model = xgb.Booster()
        model.load_model(model_path)
        print("βœ… Model loaded successfully.")
        return model
    else:
        print("❌ Model file not found.")
        return None

model = load_model()

# Prediction function with dynamic threshold
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
                            average_monthly_hours, time_spent_company, 
                            work_accident, promotion_last_5years, salary, department, threshold=0.5):
    
    # One-hot encode the department
    departments = [
        'RandD', 'accounting', 'hr', 'management', 'marketing',
        'product_mng', 'sales', 'support', 'technical'
    ]
    department_features = {f"department_{dept}": 0 for dept in departments}
    if department in departments:
        department_features[f"department_{department}"] = 1

    # Prepare the input with all 17 features as a DataFrame with column names
    input_data = {
        "satisfaction_level": [satisfaction_level],
        "last_evaluation": [last_evaluation],
        "number_project": [number_project],
        "average_monthly_hours": [average_monthly_hours],
        "time_spent_company": [time_spent_company],
        "Work_accident": [work_accident],
        "promotion_last_5years": [promotion_last_5years],
        "salary": [salary],
        **department_features
    }

    input_df = pd.DataFrame(input_data)

    # Predict using the model
    if model is None:
        return "❌ No model found. Please upload the model file."

    try:
        dmatrix = xgb.DMatrix(input_df)
        prediction = model.predict(dmatrix)
        prediction_prob = prediction[0]

        # Apply the dynamic threshold
        result = "βœ… Employee is likely to quit." if prediction_prob >= threshold else "βœ… Employee is likely to stay."
        explanation = explain_prediction(input_df)
        return f"{result} (Probability: {prediction_prob:.2%})\n\nExplanation:\n{explanation}"
    except Exception as e:
        return f"❌ Error: {str(e)}"

# SHAP Explainability
def explain_prediction(input_df):
    explainer = shap.TreeExplainer(model)
    shap_values = explainer.shap_values(input_df)
    
    # Generating SHAP explanation for this prediction
    shap.initjs()
    plt.figure()
    shap.waterfall_plot(shap.Explanation(values=shap_values[0], 
                                         base_values=explainer.expected_value,
                                         data=input_df.iloc[0].values,
                                         feature_names=input_df.columns))
    plt.savefig("shap_explanation.png")
    return "SHAP explanation generated for this prediction."

# Gradio interface with dynamic threshold
def gradio_interface():
    interface = gr.Interface(
        fn=predict_employee_status,
        inputs=[
            gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
            gr.Number(label="Last Evaluation (0.0 - 1.0)"),
            gr.Number(label="Number of Projects (1 - 10)"),
            gr.Number(label="Average Monthly Hours (80 - 320)"),
            gr.Number(label="Time Spent at Company (Years)"),
            gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
            gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
            gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
            gr.Dropdown(
                ['RandD', 'accounting', 'hr', 'management', 'marketing',
                 'product_mng', 'sales', 'support', 'technical'], 
                label="Department"
            ),
            gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
        ],
        outputs="text",
        title="Employee Retention Prediction System (With SHAP Explainability)",
        description="Predict whether an employee is likely to stay or quit based on their profile. Adjust the threshold for accurate predictions.",
        theme="dark"
    )
    interface.launch()

gradio_interface()