Spaces:
Sleeping
Sleeping
File size: 4,497 Bytes
7c5d1d0 2750f6c 7a63bb7 a719e13 2750f6c 3e47c80 2750f6c 7c5d1d0 2750f6c 7a63bb7 2750f6c 3e47c80 2750f6c 3e47c80 2750f6c 7a63bb7 a719e13 7a63bb7 2d5fce6 a719e13 2d5fce6 3e47c80 a719e13 2d5fce6 a719e13 7a63bb7 2750f6c 7a63bb7 a719e13 2750f6c b444f01 3e47c80 7a63bb7 2750f6c 7c5d1d0 3e47c80 7c5d1d0 3e47c80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import xgboost as xgb
import numpy as np
import pandas as pd
import joblib
import os
import warnings
import shap
import matplotlib.pyplot as plt
# Suppress XGBoost warnings
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")
# Load your model (automatically detect XGBoost or joblib model)
def load_model():
model_path = "best_model.json" # Ensure this matches your file name
if os.path.exists(model_path):
model = xgb.Booster()
model.load_model(model_path)
print("β
Model loaded successfully.")
return model
else:
print("β Model file not found.")
return None
model = load_model()
# Prediction function with dynamic threshold
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
average_monthly_hours, time_spent_company,
work_accident, promotion_last_5years, salary, department, threshold=0.5):
# One-hot encode the department
departments = [
'RandD', 'accounting', 'hr', 'management', 'marketing',
'product_mng', 'sales', 'support', 'technical'
]
department_features = {f"department_{dept}": 0 for dept in departments}
if department in departments:
department_features[f"department_{department}"] = 1
# Prepare the input with all 17 features as a DataFrame with column names
input_data = {
"satisfaction_level": [satisfaction_level],
"last_evaluation": [last_evaluation],
"number_project": [number_project],
"average_monthly_hours": [average_monthly_hours],
"time_spent_company": [time_spent_company],
"Work_accident": [work_accident],
"promotion_last_5years": [promotion_last_5years],
"salary": [salary],
**department_features
}
input_df = pd.DataFrame(input_data)
# Predict using the model
if model is None:
return "β No model found. Please upload the model file."
try:
dmatrix = xgb.DMatrix(input_df)
prediction = model.predict(dmatrix)
prediction_prob = prediction[0]
# Apply the dynamic threshold
result = "β
Employee is likely to quit." if prediction_prob >= threshold else "β
Employee is likely to stay."
explanation = explain_prediction(input_df)
return f"{result} (Probability: {prediction_prob:.2%})\n\nExplanation:\n{explanation}"
except Exception as e:
return f"β Error: {str(e)}"
# SHAP Explainability
def explain_prediction(input_df):
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(input_df)
# Generating SHAP explanation for this prediction
shap.initjs()
plt.figure()
shap.waterfall_plot(shap.Explanation(values=shap_values[0],
base_values=explainer.expected_value,
data=input_df.iloc[0].values,
feature_names=input_df.columns))
plt.savefig("shap_explanation.png")
return "SHAP explanation generated for this prediction."
# Gradio interface with dynamic threshold
def gradio_interface():
interface = gr.Interface(
fn=predict_employee_status,
inputs=[
gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
gr.Number(label="Number of Projects (1 - 10)"),
gr.Number(label="Average Monthly Hours (80 - 320)"),
gr.Number(label="Time Spent at Company (Years)"),
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
gr.Dropdown(
['RandD', 'accounting', 'hr', 'management', 'marketing',
'product_mng', 'sales', 'support', 'technical'],
label="Department"
),
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
],
outputs="text",
title="Employee Retention Prediction System (With SHAP Explainability)",
description="Predict whether an employee is likely to stay or quit based on their profile. Adjust the threshold for accurate predictions.",
theme="dark"
)
interface.launch()
gradio_interface()
|