Spaces:
Sleeping
Sleeping
# YOLOv8 OnnxRuntime C++ | |
<img alt="C++" src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B"> <img alt="Onnx-runtime" src="https://img.shields.io/badge/OnnxRuntime-717272.svg?logo=Onnx&logoColor=white"> | |
This example demonstrates how to perform inference using YOLOv8 in C++ with ONNX Runtime and OpenCV's API. | |
## Benefits β¨ | |
- Friendly for deployment in the industrial sector. | |
- Faster than OpenCV's DNN inference on both CPU and GPU. | |
- Supports FP32 and FP16 CUDA acceleration. | |
## Note β | |
1. Benefit for Ultralytics' latest release, a `Transpose` op is added to the YOLOv8 model, while make v8 and v5 has the same output shape. Therefore, you can run inference with YOLOv5/v7/v8 via this project. | |
## Exporting YOLOv8 Models π¦ | |
To export YOLOv8 models, use the following Python script: | |
```python | |
from ultralytics import YOLO | |
# Load a YOLOv8 model | |
model = YOLO("yolov8n.pt") | |
# Export the model | |
model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640) | |
``` | |
Alternatively, you can use the following command for exporting the model in the terminal | |
```bash | |
yolo export model=yolov8n.pt opset=12 simplify=True dynamic=False format=onnx imgsz=640,640 | |
``` | |
## Exporting YOLOv8 FP16 Models π¦ | |
```python | |
import onnx | |
from onnxconverter_common import float16 | |
model = onnx.load(R'YOUR_ONNX_PATH') | |
model_fp16 = float16.convert_float_to_float16(model) | |
onnx.save(model_fp16, R'YOUR_FP16_ONNX_PATH') | |
``` | |
## Download COCO.yaml file π | |
In order to run example, you also need to download coco.yaml. You can download the file manually from [here](https://raw.githubusercontent.com/ultralytics/ultralytics/main/ultralytics/cfg/datasets/coco.yaml) | |
## Dependencies βοΈ | |
| Dependency | Version | | |
| -------------------------------- | -------------- | | |
| Onnxruntime(linux,windows,macos) | >=1.14.1 | | |
| OpenCV | >=4.0.0 | | |
| C++ Standard | >=17 | | |
| Cmake | >=3.5 | | |
| Cuda (Optional) | >=11.4 \<12.0 | | |
| cuDNN (Cuda required) | =8 | | |
Note: The dependency on C++17 is due to the usage of the C++17 filesystem feature. | |
Note (2): Due to ONNX Runtime, we need to use CUDA 11 and cuDNN 8. Keep in mind that this requirement might change in the future. | |
## Build π οΈ | |
1. Clone the repository to your local machine. | |
2. Navigate to the root directory of the repository. | |
3. Create a build directory and navigate to it: | |
```console | |
mkdir build && cd build | |
``` | |
4. Run CMake to generate the build files: | |
```console | |
cmake .. | |
``` | |
5. Build the project: | |
```console | |
make | |
``` | |
6. The built executable should now be located in the `build` directory. | |
## Usage π | |
```c++ | |
//change your param as you like | |
//Pay attention to your device and the onnx model type(fp32 or fp16) | |
DL_INIT_PARAM params; | |
params.rectConfidenceThreshold = 0.1; | |
params.iouThreshold = 0.5; | |
params.modelPath = "yolov8n.onnx"; | |
params.imgSize = { 640, 640 }; | |
params.cudaEnable = true; | |
params.modelType = YOLO_DETECT_V8; | |
yoloDetector->CreateSession(params); | |
Detector(yoloDetector); | |
``` | |