Spaces:
Sleeping
Sleeping
comments: true | |
description: Learn to use Gradio and Ultralytics YOLOv8 for interactive object detection. Upload images and adjust detection parameters in real-time. | |
keywords: Gradio, Ultralytics YOLOv8, object detection, interactive AI, Python | |
# Interactive Object Detection: Gradio & Ultralytics YOLOv8 π | |
## Introduction to Interactive Object Detection | |
This Gradio interface provides an easy and interactive way to perform object detection using the [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) model. Users can upload images and adjust parameters like confidence threshold and intersection-over-union (IoU) threshold to get real-time detection results. | |
## Why Use Gradio for Object Detection? | |
* **User-Friendly Interface:** Gradio offers a straightforward platform for users to upload images and visualize detection results without any coding requirement. | |
* **Real-Time Adjustments:** Parameters such as confidence and IoU thresholds can be adjusted on the fly, allowing for immediate feedback and optimization of detection results. | |
* **Broad Accessibility:** The Gradio web interface can be accessed by anyone, making it an excellent tool for demonstrations, educational purposes, and quick experiments. | |
<p align="center"> | |
<img width="800" alt="Gradio example screenshot" src="https://github.com/RizwanMunawar/ultralytics/assets/26833433/52ee3cd2-ac59-4c27-9084-0fd05c6c33be"> | |
</p> | |
## How to Install the Gradio | |
```bash | |
pip install gradio | |
``` | |
## How to Use the Interface | |
1. **Upload Image:** Click on 'Upload Image' to choose an image file for object detection. | |
2. **Adjust Parameters:** | |
* **Confidence Threshold:** Slider to set the minimum confidence level for detecting objects. | |
* **IoU Threshold:** Slider to set the IoU threshold for distinguishing different objects. | |
3. **View Results:** The processed image with detected objects and their labels will be displayed. | |
## Example Use Cases | |
* **Sample Image 1:** Bus detection with default thresholds. | |
* **Sample Image 2:** Detection on a sports image with default thresholds. | |
## Usage Example | |
This section provides the Python code used to create the Gradio interface with the Ultralytics YOLOv8 model. Supports classification tasks, detection tasks, segmentation tasks, and key point tasks. | |
```python | |
import PIL.Image as Image | |
import gradio as gr | |
from ultralytics import ASSETS, YOLO | |
model = YOLO("yolov8n.pt") | |
def predict_image(img, conf_threshold, iou_threshold): | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
return im | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold") | |
], | |
outputs=gr.Image(type="pil", label="Result"), | |
title="Ultralytics Gradio", | |
description="Upload images for inference. The Ultralytics YOLOv8n model is used by default.", | |
examples=[ | |
[ASSETS / "bus.jpg", 0.25, 0.45], | |
[ASSETS / "zidane.jpg", 0.25, 0.45], | |
] | |
) | |
if __name__ == '__main__': | |
iface.launch() | |
``` | |
## Parameters Explanation | |
| Parameter Name | Type | Description | | |
|------------------|---------|----------------------------------------------------------| | |
| `img` | `Image` | The image on which object detection will be performed. | | |
| `conf_threshold` | `float` | Confidence threshold for detecting objects. | | |
| `iou_threshold` | `float` | Intersection-over-union threshold for object separation. | | |
### Gradio Interface Components | |
| Component | Description | | |
|--------------|------------------------------------------| | |
| Image Input | To upload the image for detection. | | |
| Sliders | To adjust confidence and IoU thresholds. | | |
| Image Output | To display the detection results. | | |