Spaces:
Sleeping
Sleeping
comments: true | |
description: Speed Estimation Using Ultralytics YOLOv8 | |
keywords: Ultralytics, YOLOv8, Object Detection, Speed Estimation, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK | |
# Speed Estimation using Ultralytics YOLOv8 π | |
## What is Speed Estimation? | |
Speed estimation is the process of calculating the rate of movement of an object within a given context, often employed in computer vision applications. Using [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) you can now calculate the speed of object using [object tracking](https://docs.ultralytics.com/modes/track/) alongside distance and time data, crucial for tasks like traffic and surveillance. The accuracy of speed estimation directly influences the efficiency and reliability of various applications, making it a key component in the advancement of intelligent systems and real-time decision-making processes. | |
<p align="center"> | |
<br> | |
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/rCggzXRRSRo" | |
title="YouTube video player" frameborder="0" | |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" | |
allowfullscreen> | |
</iframe> | |
<br> | |
<strong>Watch:</strong> Speed Estimation using Ultralytics YOLOv8 | |
</p> | |
## Advantages of Speed Estimation? | |
- **Efficient Traffic Control:** Accurate speed estimation aids in managing traffic flow, enhancing safety, and reducing congestion on roadways. | |
- **Precise Autonomous Navigation:** In autonomous systems like self-driving cars, reliable speed estimation ensures safe and accurate vehicle navigation. | |
- **Enhanced Surveillance Security:** Speed estimation in surveillance analytics helps identify unusual behaviors or potential threats, improving the effectiveness of security measures. | |
## Real World Applications | |
| Transportation | Transportation | | |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------:| | |
|  |  | | |
| Speed Estimation on Road using Ultralytics YOLOv8 | Speed Estimation on Bridge using Ultralytics YOLOv8 | | |
!!! Example "Speed Estimation using YOLOv8 Example" | |
=== "Speed Estimation" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.solutions import speed_estimation | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
names = model.model.names | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# Video writer | |
video_writer = cv2.VideoWriter("speed_estimation.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
line_pts = [(0, 360), (1280, 360)] | |
# Init speed-estimation obj | |
speed_obj = speed_estimation.SpeedEstimator() | |
speed_obj.set_args(reg_pts=line_pts, | |
names=names, | |
view_img=True) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
tracks = model.track(im0, persist=True, show=False) | |
im0 = speed_obj.estimate_speed(im0, tracks) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
???+ warning "Speed is Estimate" | |
Speed will be an estimate and may not be completely accurate. Additionally, the estimation can vary depending on GPU speed. | |
### Optional Arguments `set_args` | |
| Name | Type | Default | Description | | |
|--------------------|--------|----------------------------|---------------------------------------------------| | |
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | | |
| `names` | `dict` | `None` | Classes names | | |
| `view_img` | `bool` | `False` | Display frames with counts | | |
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness | | |
| `region_thickness` | `int` | `5` | Thickness for object counter region or line | | |
| `spdl_dist_thresh` | `int` | `10` | Euclidean Distance threshold for speed check line | | |
### Arguments `model.track` | |
| Name | Type | Default | Description | | |
|-----------|---------|----------------|-------------------------------------------------------------| | |
| `source` | `im0` | `None` | source directory for images or videos | | |
| `persist` | `bool` | `False` | persisting tracks between frames | | |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' | | |
| `conf` | `float` | `0.3` | Confidence Threshold | | |
| `iou` | `float` | `0.5` | IOU Threshold | | |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | | |
| `verbose` | `bool` | `True` | Display the object tracking results | | |