Spaces:
Sleeping
Sleeping
comments: true | |
description: Object Counting Using Ultralytics YOLOv8 | |
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK | |
# Object Counting using Ultralytics YOLOv8 🚀 | |
## What is Object Counting? | |
Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities. | |
<p align="center"> | |
<br> | |
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0" | |
title="YouTube video player" frameborder="0" | |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" | |
allowfullscreen> | |
</iframe> | |
<br> | |
<strong>Watch:</strong> Object Counting using Ultralytics YOLOv8 | |
</p> | |
## Advantages of Object Counting? | |
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management. | |
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection. | |
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains. | |
## Real World Applications | |
| Logistics | Aquaculture | | |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:| | |
|  |  | | |
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 | | |
!!! Example "Object Counting using YOLOv8 Example" | |
=== "Count in Region" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.solutions import object_counter | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# Define region points | |
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] | |
# Video writer | |
video_writer = cv2.VideoWriter("object_counting_output.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
# Init Object Counter | |
counter = object_counter.ObjectCounter() | |
counter.set_args(view_img=True, | |
reg_pts=region_points, | |
classes_names=model.names, | |
draw_tracks=True) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
tracks = model.track(im0, persist=True, show=False) | |
im0 = counter.start_counting(im0, tracks) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
=== "Count in Polygon" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.solutions import object_counter | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# Define region points as a polygon with 5 points | |
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)] | |
# Video writer | |
video_writer = cv2.VideoWriter("object_counting_output.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
# Init Object Counter | |
counter = object_counter.ObjectCounter() | |
counter.set_args(view_img=True, | |
reg_pts=region_points, | |
classes_names=model.names, | |
draw_tracks=True) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
tracks = model.track(im0, persist=True, show=False) | |
im0 = counter.start_counting(im0, tracks) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
=== "Count in Line" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.solutions import object_counter | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# Define line points | |
line_points = [(20, 400), (1080, 400)] | |
# Video writer | |
video_writer = cv2.VideoWriter("object_counting_output.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
# Init Object Counter | |
counter = object_counter.ObjectCounter() | |
counter.set_args(view_img=True, | |
reg_pts=line_points, | |
classes_names=model.names, | |
draw_tracks=True) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
tracks = model.track(im0, persist=True, show=False) | |
im0 = counter.start_counting(im0, tracks) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
=== "Specific Classes" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.solutions import object_counter | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
line_points = [(20, 400), (1080, 400)] # line or region points | |
classes_to_count = [0, 2] # person and car classes for count | |
# Video writer | |
video_writer = cv2.VideoWriter("object_counting_output.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, | |
(w, h)) | |
# Init Object Counter | |
counter = object_counter.ObjectCounter() | |
counter.set_args(view_img=True, | |
reg_pts=line_points, | |
classes_names=model.names, | |
draw_tracks=True) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
tracks = model.track(im0, persist=True, show=False, | |
classes=classes_to_count) | |
im0 = counter.start_counting(im0, tracks) | |
video_writer.write(im0) | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
???+ tip "Region is Movable" | |
You can move the region anywhere in the frame by clicking on its edges | |
### Optional Arguments `set_args` | |
| Name | Type | Default | Description | | |
|-----------------------|-------------|----------------------------|-----------------------------------------------| | |
| `view_img` | `bool` | `False` | Display frames with counts | | |
| `view_in_counts` | `bool` | `True` | Display in-counts only on video frame | | |
| `view_out_counts` | `bool` | `True` | Display out-counts only on video frame | | |
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness | | |
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | | |
| `classes_names` | `dict` | `model.model.names` | Dictionary of Class Names | | |
| `region_color` | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line | | |
| `track_thickness` | `int` | `2` | Thickness of Tracking Lines | | |
| `draw_tracks` | `bool` | `False` | Enable drawing Track lines | | |
| `track_color` | `RGB Color` | `(0, 255, 0)` | Color for each track line | | |
| `line_dist_thresh` | `int` | `15` | Euclidean Distance threshold for line counter | | |
| `count_txt_thickness` | `int` | `2` | Thickness of Object counts text | | |
| `count_txt_color` | `RGB Color` | `(0, 0, 0)` | Foreground color for Object counts text | | |
| `count_color` | `RGB Color` | `(255, 255, 255)` | Background color for Object counts text | | |
| `region_thickness` | `int` | `5` | Thickness for object counter region or line | | |
### Arguments `model.track` | |
| Name | Type | Default | Description | | |
|-----------|---------|----------------|-------------------------------------------------------------| | |
| `source` | `im0` | `None` | source directory for images or videos | | |
| `persist` | `bool` | `False` | persisting tracks between frames | | |
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' | | |
| `conf` | `float` | `0.3` | Confidence Threshold | | |
| `iou` | `float` | `0.5` | IOU Threshold | | |
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | | |
| `verbose` | `bool` | `True` | Display the object tracking results | | |