Spaces:
Sleeping
Sleeping
comments: true | |
description: Learn to blur objects using Ultralytics YOLOv8 for privacy in images and videos. | |
keywords: Ultralytics, YOLOv8, Object Detection, Object Blurring, Privacy Protection, Image Processing, Video Analysis, AI, Machine Learning | |
# Object Blurring using Ultralytics YOLOv8 π | |
## What is Object Blurring? | |
Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLOv8 model capabilities to identify and manipulate objects within a given scene. | |
## Advantages of Object Blurring? | |
- **Privacy Protection**: Object blurring is an effective tool for safeguarding privacy by concealing sensitive or personally identifiable information in images or videos. | |
- **Selective Focus**: YOLOv8 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information. | |
- **Real-time Processing**: YOLOv8's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments. | |
!!! Example "Object Blurring using YOLOv8 Example" | |
=== "Object Blurring" | |
```python | |
from ultralytics import YOLO | |
from ultralytics.utils.plotting import Annotator, colors | |
import cv2 | |
model = YOLO("yolov8n.pt") | |
names = model.names | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
# Blur ratio | |
blur_ratio = 50 | |
# Video writer | |
video_writer = cv2.VideoWriter("object_blurring_output.avi", | |
cv2.VideoWriter_fourcc(*'mp4v'), | |
fps, (w, h)) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
results = model.predict(im0, show=False) | |
boxes = results[0].boxes.xyxy.cpu().tolist() | |
clss = results[0].boxes.cls.cpu().tolist() | |
annotator = Annotator(im0, line_width=2, example=names) | |
if boxes is not None: | |
for box, cls in zip(boxes, clss): | |
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)]) | |
obj = im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])] | |
blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio)) | |
im0[int(box[1]):int(box[3]), int(box[0]):int(box[2])] = blur_obj | |
cv2.imshow("ultralytics", im0) | |
video_writer.write(im0) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
cap.release() | |
video_writer.release() | |
cv2.destroyAllWindows() | |
``` | |
### Arguments `model.predict` | |
| Name | Type | Default | Description | | |
|-----------------|----------------|------------------------|----------------------------------------------------------------------------| | |
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos | | |
| `conf` | `float` | `0.25` | object confidence threshold for detection | | |
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS | | |
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) | | |
| `half` | `bool` | `False` | use half precision (FP16) | | |
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu | | |
| `max_det` | `int` | `300` | maximum number of detections per image | | |
| `vid_stride` | `bool` | `False` | video frame-rate stride | | |
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) | | |
| `visualize` | `bool` | `False` | visualize model features | | |
| `augment` | `bool` | `False` | apply image augmentation to prediction sources | | |
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS | | |
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] | | |
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks | | |
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers | | |