Spaces:
Sleeping
Sleeping
comments: true | |
description: Instance Segmentation with Object Tracking using Ultralytics YOLOv8 | |
keywords: Ultralytics, YOLOv8, Instance Segmentation, Object Detection, Object Tracking, Bounding Box, Computer Vision, Notebook, IPython Kernel, CLI, Python SDK | |
# Instance Segmentation and Tracking using Ultralytics YOLOv8 π | |
## What is Instance Segmentation? | |
[Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) instance segmentation involves identifying and outlining individual objects in an image, providing a detailed understanding of spatial distribution. Unlike semantic segmentation, it uniquely labels and precisely delineates each object, crucial for tasks like object detection and medical imaging. | |
There are two types of instance segmentation tracking available in the Ultralytics package: | |
- **Instance Segmentation with Class Objects:** Each class object is assigned a unique color for clear visual separation. | |
- **Instance Segmentation with Object Tracks:** Every track is represented by a distinct color, facilitating easy identification and tracking. | |
<p align="center"> | |
<br> | |
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/75G_S1Ngji8" | |
title="YouTube video player" frameborder="0" | |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" | |
allowfullscreen> | |
</iframe> | |
<br> | |
<strong>Watch:</strong> Instance Segmentation with Object Tracking using Ultralytics YOLOv8 | |
</p> | |
## Samples | |
| Instance Segmentation | Instance Segmentation + Object Tracking | | |
|:---------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------:| | |
|  |  | | |
| Ultralytics Instance Segmentation π | Ultralytics Instance Segmentation with Object Tracking π₯ | | |
!!! Example "Instance Segmentation and Tracking" | |
=== "Instance Segmentation" | |
```python | |
import cv2 | |
from ultralytics import YOLO | |
from ultralytics.utils.plotting import Annotator, colors | |
model = YOLO("yolov8n-seg.pt") # segmentation model | |
names = model.model.names | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
out = cv2.VideoWriter('instance-segmentation.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h)) | |
while True: | |
ret, im0 = cap.read() | |
if not ret: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
results = model.predict(im0) | |
annotator = Annotator(im0, line_width=2) | |
if results[0].masks is not None: | |
clss = results[0].boxes.cls.cpu().tolist() | |
masks = results[0].masks.xy | |
for mask, cls in zip(masks, clss): | |
annotator.seg_bbox(mask=mask, | |
mask_color=colors(int(cls), True), | |
det_label=names[int(cls)]) | |
out.write(im0) | |
cv2.imshow("instance-segmentation", im0) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
out.release() | |
cap.release() | |
cv2.destroyAllWindows() | |
``` | |
=== "Instance Segmentation with Object Tracking" | |
```python | |
import cv2 | |
from ultralytics import YOLO | |
from ultralytics.utils.plotting import Annotator, colors | |
from collections import defaultdict | |
track_history = defaultdict(lambda: []) | |
model = YOLO("yolov8n-seg.pt") # segmentation model | |
cap = cv2.VideoCapture("path/to/video/file.mp4") | |
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS)) | |
out = cv2.VideoWriter('instance-segmentation-object-tracking.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h)) | |
while True: | |
ret, im0 = cap.read() | |
if not ret: | |
print("Video frame is empty or video processing has been successfully completed.") | |
break | |
annotator = Annotator(im0, line_width=2) | |
results = model.track(im0, persist=True) | |
if results[0].boxes.id is not None and results[0].masks is not None: | |
masks = results[0].masks.xy | |
track_ids = results[0].boxes.id.int().cpu().tolist() | |
for mask, track_id in zip(masks, track_ids): | |
annotator.seg_bbox(mask=mask, | |
mask_color=colors(track_id, True), | |
track_label=str(track_id)) | |
out.write(im0) | |
cv2.imshow("instance-segmentation-object-tracking", im0) | |
if cv2.waitKey(1) & 0xFF == ord('q'): | |
break | |
out.release() | |
cap.release() | |
cv2.destroyAllWindows() | |
``` | |
### `seg_bbox` Arguments | |
| Name | Type | Default | Description | | |
|---------------|---------|-----------------|----------------------------------------| | |
| `mask` | `array` | `None` | Segmentation mask coordinates | | |
| `mask_color` | `tuple` | `(255, 0, 255)` | Mask color for every segmented box | | |
| `det_label` | `str` | `None` | Label for segmented object | | |
| `track_label` | `str` | `None` | Label for segmented and tracked object | | |
## Note | |
For any inquiries, feel free to post your questions in the [Ultralytics Issue Section](https://github.com/ultralytics/ultralytics/issues/new/choose) or the discussion section mentioned below. | |