Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from fastapi import FastAPI, APIRouter | |
from fastapi.middleware.cors import CORSMiddleware | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import torch | |
import numpy as np | |
from .utils.evaluation import TextEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
# Initialize FastAPI app and router | |
app = FastAPI() | |
router = APIRouter() | |
# Add CORS middleware | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
DESCRIPTION = "Efficient Climate Disinformation Detection" | |
ROUTE = "/text" | |
async def evaluate_text(request: TextEvaluationRequest): | |
""" | |
Evaluate text classification for climate disinformation detection. | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
# Define the label mapping | |
LABEL_MAPPING = { | |
"0_not_relevant": 0, | |
"1_not_happening": 1, | |
"2_not_human": 2, | |
"3_not_bad": 3, | |
"4_solutions_harmful_unnecessary": 4, | |
"5_science_unreliable": 5, | |
"6_proponents_biased": 6, | |
"7_fossil_fuels_needed": 7 | |
} | |
# Load and prepare the dataset | |
dataset = load_dataset(request.dataset_name) | |
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) | |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) | |
test_dataset = train_test["test"] | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
try: | |
# Model configuration | |
model_name = "distilbert-base-uncased" | |
BATCH_SIZE = 64 | |
MAX_LENGTH = 128 | |
# Initialize tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
model_name, | |
num_labels=8, | |
problem_type="single_label_classification" | |
) | |
# Enable mixed precision if available | |
if torch.cuda.is_available(): | |
model = model.half() | |
# Move model to device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
model.eval() | |
# Get test texts | |
test_texts = test_dataset["quote"] | |
predictions = [] | |
# Process in batches | |
for i in range(0, len(test_texts), BATCH_SIZE): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
batch_texts = test_texts[i:i + BATCH_SIZE] | |
# Tokenize batch | |
inputs = tokenizer( | |
batch_texts, | |
padding=True, | |
truncation=True, | |
max_length=MAX_LENGTH, | |
return_tensors="pt" | |
) | |
# Move inputs to device | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Run inference | |
with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): | |
outputs = model(**inputs) | |
batch_preds = torch.argmax(outputs.logits, dim=1) | |
predictions.extend(batch_preds.cpu().numpy()) | |
# Get true labels | |
true_labels = test_dataset['label'] | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
# Calculate accuracy | |
accuracy = accuracy_score(true_labels, predictions) | |
# Prepare results | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
return results | |
except Exception as e: | |
tracker.stop_task() | |
raise e | |
# Include the router | |
app.include_router(router) | |
# Add a health check endpoint | |
async def health_check(): | |
return {"status": "healthy"} |