File size: 4,663 Bytes
1358711
f63546e
 
4d6e8c2
 
 
1358711
aee4009
4d6e8c2
 
 
 
f63546e
 
4d6e8c2
 
f63546e
 
 
 
 
 
 
 
 
1358711
1c33274
70f5f26
f63546e
4d6e8c2
 
70f5f26
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358711
 
 
 
 
 
4d6e8c2
 
 
70f5f26
d778205
1358711
f63546e
 
 
d778205
1358711
 
 
 
 
f63546e
daf1822
d778205
f63546e
1358711
f63546e
1358711
 
 
 
 
 
 
 
 
 
f63546e
1358711
 
 
 
 
 
f63546e
1358711
 
 
 
 
 
 
 
f63546e
1358711
 
f63546e
1358711
 
 
 
 
f63546e
1358711
f63546e
 
d778205
f63546e
 
d778205
 
1358711
d778205
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
d778205
 
 
 
 
f63546e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from fastapi import FastAPI, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
import numpy as np

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

# Initialize FastAPI app and router
app = FastAPI()
router = APIRouter()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

DESCRIPTION = "Efficient Climate Disinformation Detection"
ROUTE = "/text"

@router.post("/text", tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    try:
        # Model configuration
        model_name = "distilbert-base-uncased"
        BATCH_SIZE = 64
        MAX_LENGTH = 128

        # Initialize tokenizer and model
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSequenceClassification.from_pretrained(
            model_name,
            num_labels=8,
            problem_type="single_label_classification"
        )

        # Enable mixed precision if available
        if torch.cuda.is_available():
            model = model.half()

        # Move model to device
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        model.eval()

        # Get test texts
        test_texts = test_dataset["quote"]
        predictions = []

        # Process in batches
        for i in range(0, len(test_texts), BATCH_SIZE):
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

            batch_texts = test_texts[i:i + BATCH_SIZE]
            
            # Tokenize batch
            inputs = tokenizer(
                batch_texts,
                padding=True,
                truncation=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            )
            
            # Move inputs to device
            inputs = {k: v.to(device) for k, v in inputs.items()}

            # Run inference
            with torch.no_grad(), torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
                outputs = model(**inputs)
                batch_preds = torch.argmax(outputs.logits, dim=1)
                predictions.extend(batch_preds.cpu().numpy())

        # Get true labels
        true_labels = test_dataset['label']

        # Stop tracking emissions
        emissions_data = tracker.stop_task()
        
        # Calculate accuracy
        accuracy = accuracy_score(true_labels, predictions)
        
        # Prepare results
        results = {
            "username": username,
            "space_url": space_url,
            "submission_timestamp": datetime.now().isoformat(),
            "model_description": DESCRIPTION,
            "accuracy": float(accuracy),
            "energy_consumed_wh": emissions_data.energy_consumed * 1000,
            "emissions_gco2eq": emissions_data.emissions * 1000,
            "emissions_data": clean_emissions_data(emissions_data),
            "api_route": ROUTE,
            "dataset_config": {
                "dataset_name": request.dataset_name,
                "test_size": request.test_size,
                "test_seed": request.test_seed
            }
        }
        
        return results
        
    except Exception as e:
        tracker.stop_task()
        raise e

# Include the router
app.include_router(router)

# Add a health check endpoint
@app.get("/health")
async def health_check():
    return {"status": "healthy"}