File size: 4,493 Bytes
02ba82b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from config import ModelArgs
from model import Llama
import torch
import torch.nn.functional as F
from tokenizer import Tokenizer
import argparse


tokenizer = Tokenizer()
tokenizer = tokenizer.ready_tokenizer()


def remove_hashtag_lines(text):
    """Removes lines that contain hashtags from the given text."""
    lines = text.split("\n")
    cleaned_lines = [line for line in lines if "#" not in line]
    return "\n".join(cleaned_lines)


def remove_prefix(state_dict, prefix):
    new_state_dict = {}
    for key, value in state_dict.items():
        if key.startswith(prefix):
            new_key = key[len(prefix):]  # Remove the prefix
            new_state_dict[new_key] = value
        else:
            new_state_dict[key] = value
    return new_state_dict


def topk_sampling(model, prompt, device, max_length=50, top_k=50, temperature=1.0, frequency_penalty=0.5):
    input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
    # generated_tokens = []  # Store generated tokens
    token_frequencies = {}  # Track token counts

    for step in range(max_length):
        with torch.no_grad():
            outputs = model(input_ids)
            logits = outputs[:, -1, :]  # Get logits for next token
            
            logits = logits / temperature
            # # Step 1: Apply frequency penalty ONLY AFTER the first token is generated
            if step > 0:  # Skip penalty on first step
                for token in input_ids[0].tolist():
                    token_frequencies[token] = token_frequencies.get(token, 0) + 1  # Count occurrences

                # Modify logits AFTER counting
                for token, freq in token_frequencies.items():
                    logits[0, token] -= frequency_penalty * (freq ** 0.8)  # Apply soft penalty

            # Convert logits to probabilities
            probs = F.softmax(logits, dim=-1)

            # Top-k filtering
            top_k_probs, top_k_indices = torch.topk(probs, top_k, dim=-1)

            # Apply temperature scaling
            # probs = probs / temperature

            # Sample from top-k
            next_token = torch.multinomial(top_k_probs, num_samples=1)

            # if next_token.item() == tokenizer.eos_token_id:
            #     break  # Stop if EOS token is generated

            # Store generated token AFTER sampling
            # token_id = next_token.item()
            # generated_tokens.append(token_id)

            # Update input_ids for next step
            xcol = torch.gather(top_k_indices, -1, next_token)

            if xcol == tokenizer.eos_token_id:
                break
            # generated_tokens.append(xcol)
            input_ids = torch.cat([input_ids, xcol], dim=1)

    # Decode only the generated tokens
    return tokenizer.decode(input_ids[0], skip_special_tokens=True)
def main():

    # torch.set_float32_matmul_precision('high')

    parser = argparse.ArgumentParser()
    parser.add_argument("--prompt", type=str, default=''' Follow the given instructions carefully. My mom is about to retire from her 10 long years of service to a company. write me a message saying how grateful we are for her service to our company. ''')
    parser.add_argument("--max_length", type=int, default=256)
    parser.add_argument("--temperature", type=float, default=0.8)
    # parser.add_argument("--repetition_penalty", type=float, default=1.2)
    args = parser.parse_args()
    
    model = Llama(device=ModelArgs.device, embeddings_dims=ModelArgs.embeddings_dims, no_of_decoder_layers=ModelArgs.no_of_decoder_layers, block_size=ModelArgs.block_size, vocab_size=ModelArgs.vocab_size, dropout=ModelArgs.dropout)
    # model = torch.compile(model)
    model = model.to(ModelArgs.device)

    dict_model = torch.load('DPO_model_1650.pt')
    dict_model['MODEL_STATE'] = remove_prefix(dict_model['MODEL_STATE'], '_orig_mod.')
    model.load_state_dict(dict_model['MODEL_STATE'])
    model.eval()
    print("Model ready")
    # prompt = 'Its a secret'

    with torch.no_grad():
        generated_text = topk_sampling(model, args.prompt, max_length=args.max_length, top_k=args.top_k, temperature=args.temperature, device=ModelArgs.device)
        # generated_text = remove_hashtag_lines(generated_text)
        print("Generated: ", generated_text)
        # generated_text = beam_search(model, tokenizer, args.prompt, beam_width=5, max_length=50, temperature=1.0)
        # print(args.prompt + generated_text)


if __name__ == '__main__':
    main()