Spaces:
Paused
Paused
Upload inference_sft.py
Browse files- inference_sft.py +113 -0
inference_sft.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config import ModelArgs
|
2 |
+
from model import Llama
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from tokenizer import Tokenizer
|
6 |
+
import argparse
|
7 |
+
|
8 |
+
|
9 |
+
tokenizer = Tokenizer()
|
10 |
+
tokenizer = tokenizer.ready_tokenizer()
|
11 |
+
|
12 |
+
|
13 |
+
def remove_hashtag_lines(text):
|
14 |
+
"""Removes lines that contain hashtags from the given text."""
|
15 |
+
lines = text.split("\n")
|
16 |
+
cleaned_lines = [line for line in lines if "#" not in line]
|
17 |
+
return "\n".join(cleaned_lines)
|
18 |
+
|
19 |
+
|
20 |
+
def remove_prefix(state_dict, prefix):
|
21 |
+
new_state_dict = {}
|
22 |
+
for key, value in state_dict.items():
|
23 |
+
if key.startswith(prefix):
|
24 |
+
new_key = key[len(prefix):] # Remove the prefix
|
25 |
+
new_state_dict[new_key] = value
|
26 |
+
else:
|
27 |
+
new_state_dict[key] = value
|
28 |
+
return new_state_dict
|
29 |
+
|
30 |
+
|
31 |
+
def topk_sampling(model, prompt, device, max_length=50, top_k=50, temperature=1.0, frequency_penalty=0.5):
|
32 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
33 |
+
# generated_tokens = [] # Store generated tokens
|
34 |
+
token_frequencies = {} # Track token counts
|
35 |
+
|
36 |
+
for step in range(max_length):
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(input_ids)
|
39 |
+
logits = outputs[:, -1, :] # Get logits for next token
|
40 |
+
|
41 |
+
logits = logits / temperature
|
42 |
+
# # Step 1: Apply frequency penalty ONLY AFTER the first token is generated
|
43 |
+
if step > 0: # Skip penalty on first step
|
44 |
+
for token in input_ids[0].tolist():
|
45 |
+
token_frequencies[token] = token_frequencies.get(token, 0) + 1 # Count occurrences
|
46 |
+
|
47 |
+
# Modify logits AFTER counting
|
48 |
+
for token, freq in token_frequencies.items():
|
49 |
+
logits[0, token] -= frequency_penalty * (freq ** 0.8) # Apply soft penalty
|
50 |
+
|
51 |
+
# Convert logits to probabilities
|
52 |
+
probs = F.softmax(logits, dim=-1)
|
53 |
+
|
54 |
+
# Top-k filtering
|
55 |
+
top_k_probs, top_k_indices = torch.topk(probs, top_k, dim=-1)
|
56 |
+
|
57 |
+
# Apply temperature scaling
|
58 |
+
# probs = probs / temperature
|
59 |
+
|
60 |
+
# Sample from top-k
|
61 |
+
next_token = torch.multinomial(top_k_probs, num_samples=1)
|
62 |
+
|
63 |
+
# if next_token.item() == tokenizer.eos_token_id:
|
64 |
+
# break # Stop if EOS token is generated
|
65 |
+
|
66 |
+
# Store generated token AFTER sampling
|
67 |
+
# token_id = next_token.item()
|
68 |
+
# generated_tokens.append(token_id)
|
69 |
+
|
70 |
+
# Update input_ids for next step
|
71 |
+
xcol = torch.gather(top_k_indices, -1, next_token)
|
72 |
+
|
73 |
+
if xcol == tokenizer.eos_token_id:
|
74 |
+
break
|
75 |
+
# generated_tokens.append(xcol)
|
76 |
+
input_ids = torch.cat([input_ids, xcol], dim=1)
|
77 |
+
|
78 |
+
# Decode only the generated tokens
|
79 |
+
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
80 |
+
def main():
|
81 |
+
|
82 |
+
# torch.set_float32_matmul_precision('high')
|
83 |
+
|
84 |
+
parser = argparse.ArgumentParser()
|
85 |
+
parser.add_argument("--prompt", type=str, default=''' Follow the given instructions carefully. My mom is about to retire from her 10 long years of service to a company. write me a message saying how grateful we are for her service to our company. ''')
|
86 |
+
parser.add_argument("--max_length", type=int, default=256)
|
87 |
+
parser.add_argument("--temperature", type=float, default=0.8)
|
88 |
+
# parser.add_argument("--repetition_penalty", type=float, default=1.2)
|
89 |
+
args = parser.parse_args()
|
90 |
+
|
91 |
+
model = Llama(device=ModelArgs.device, embeddings_dims=ModelArgs.embeddings_dims, no_of_decoder_layers=ModelArgs.no_of_decoder_layers, block_size=ModelArgs.block_size, vocab_size=ModelArgs.vocab_size, dropout=ModelArgs.dropout)
|
92 |
+
# model = torch.compile(model)
|
93 |
+
model = model.to(ModelArgs.device)
|
94 |
+
|
95 |
+
dict_model = torch.load('DPO_model_1650.pt')
|
96 |
+
dict_model['MODEL_STATE'] = remove_prefix(dict_model['MODEL_STATE'], '_orig_mod.')
|
97 |
+
model.load_state_dict(dict_model['MODEL_STATE'])
|
98 |
+
model.eval()
|
99 |
+
print("Model ready")
|
100 |
+
# prompt = 'Its a secret'
|
101 |
+
|
102 |
+
with torch.no_grad():
|
103 |
+
generated_text = topk_sampling(model, args.prompt, max_length=args.max_length, top_k=args.top_k, temperature=args.temperature, device=ModelArgs.device)
|
104 |
+
# generated_text = remove_hashtag_lines(generated_text)
|
105 |
+
print("Generated: ", generated_text)
|
106 |
+
# generated_text = beam_search(model, tokenizer, args.prompt, beam_width=5, max_length=50, temperature=1.0)
|
107 |
+
# print(args.prompt + generated_text)
|
108 |
+
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
main()
|
112 |
+
|
113 |
+
|