|
import gradio as gr |
|
import numpy as np |
|
import random |
|
|
|
import spaces |
|
from pipeline_flux import FluxPipeline |
|
from transformer_flux import FluxTransformer2DModel |
|
import torch |
|
|
|
flux_model = "schnell" |
|
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.bfloat16 |
|
|
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
bfl_repo, subfolder="transformer", torch_dtype=dtype |
|
) |
|
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype) |
|
pipe.transformer = transformer |
|
pipe.scheduler.config.use_dynamic_shifting = False |
|
pipe.scheduler.config.time_shift = 10 |
|
|
|
pipe = pipe.to(device) |
|
|
|
pipe.load_lora_weights( |
|
"Huage001/URAE", |
|
weight_name="urae_2k_adapter.safetensors", |
|
adapter_name="2k", |
|
) |
|
pipe.load_lora_weights( |
|
"Huage001/URAE", |
|
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors", |
|
adapter_name="4k_dev", |
|
) |
|
pipe.load_lora_weights( |
|
"Huage001/URAE", |
|
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors", |
|
adapter_name="4k_schnell", |
|
) |
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 4096 |
|
USE_ZERO_GPU = True |
|
|
|
|
|
|
|
def infer( |
|
prompt, |
|
model, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
num_inference_steps, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
print("Using model:", model) |
|
if model == "2k": |
|
pipe.vae.enable_tiling(False) |
|
pipe.set_adapters("2k") |
|
elif model == "4k": |
|
pipe.vae.enable_tiling(True) |
|
pipe.set_adapters(f"4k_{flux_model}") |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
guidance_scale=0, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
max_sequence_length=256, |
|
ntk_factor=10, |
|
proportional_attention=True, |
|
generator=generator, |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
if USE_ZERO_GPU: |
|
infer = spaces.GPU(infer) |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#maincontainer { |
|
display: flex; |
|
} |
|
|
|
#col1 { |
|
margin: 0 auto; |
|
max-width: 50%; |
|
} |
|
#col2 { |
|
margin: 0 auto; |
|
# max-width: 40px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# URAE: ") |
|
with gr.Row(elem_id="maincontainer"): |
|
with gr.Column(elem_id="col1"): |
|
gr.Markdown("### Prompt:") |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
run_button = gr.Button("Generate", scale=1, variant="primary") |
|
|
|
gr.Markdown("### Setting:") |
|
|
|
model = gr.Radio( |
|
label="Model", |
|
choices=[ |
|
("2K model", "2k"), |
|
("4K model (beta)", "4k"), |
|
], |
|
value="2k", |
|
) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=2048, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=2048, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=4, |
|
) |
|
|
|
with gr.Column(elem_id="col2"): |
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
model, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|