File size: 4,831 Bytes
03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff be0caeb 029e8ff be0caeb 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a 029e8ff 03e2f4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import gradio as gr
import numpy as np
import random
import spaces
from pipeline_flux import FluxPipeline
from transformer_flux import FluxTransformer2DModel
import torch
flux_model = "schnell"
bfl_repo = f"black-forest-labs/FLUX.1-{flux_model}"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
transformer = FluxTransformer2DModel.from_pretrained(
bfl_repo, subfolder="transformer", torch_dtype=dtype
)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.scheduler.config.use_dynamic_shifting = False
pipe.scheduler.config.time_shift = 10
# pipe.enable_model_cpu_offload()
pipe = pipe.to(device)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_2k_adapter.safetensors",
adapter_name="2k",
)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_4k_adapter_lora_conversion_dev.safetensors",
adapter_name="4k_dev",
)
pipe.load_lora_weights(
"Huage001/URAE",
weight_name="urae_4k_adapter_lora_conversion_schnell.safetensors",
adapter_name="4k_schnell",
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
USE_ZERO_GPU = True
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
model,
seed,
randomize_seed,
width,
height,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
print("Using model:", model)
if model == "2k":
pipe.vae.enable_tiling(False)
pipe.set_adapters("2k")
elif model == "4k":
pipe.vae.enable_tiling(True)
pipe.set_adapters(f"4k_{flux_model}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=0,
num_inference_steps=num_inference_steps,
width=width,
height=height,
max_sequence_length=256,
ntk_factor=10,
proportional_attention=True,
generator=generator,
).images[0]
return image, seed
if USE_ZERO_GPU:
infer = spaces.GPU(infer)
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#maincontainer {
display: flex;
}
#col1 {
margin: 0 auto;
max-width: 50%;
}
#col2 {
margin: 0 auto;
# max-width: 40px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# URAE: ")
with gr.Row(elem_id="maincontainer"):
with gr.Column(elem_id="col1"):
gr.Markdown("### Prompt:")
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
gr.Examples(examples=examples, inputs=[prompt])
run_button = gr.Button("Generate", scale=1, variant="primary")
gr.Markdown("### Setting:")
model = gr.Radio(
label="Model",
choices=[
("2K model", "2k"),
("4K model (beta)", "4k"),
],
value="2k",
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=2048, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=2048, # Replace with defaults that work for your model
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4, # Replace with defaults that work for your model
)
with gr.Column(elem_id="col2"):
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
model,
seed,
randomize_seed,
width,
height,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|