File size: 3,276 Bytes
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f623d12
9fbf1b0
 
 
 
 
f623d12
9fbf1b0
 
 
 
 
f623d12
9fbf1b0
 
 
 
 
f623d12
9fbf1b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from diffusers.pipelines import FluxPipeline
from OminiControl.src.flux.condition import Condition
from PIL import Image
import random
import os

from OminiControl.src.flux.generate import generate, seed_everything

HF_TOKEN=os.getenv("HF_TOKEN")

print("Loading model...")
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN
)
pipe = pipe.to("cuda")

pipe.unload_lora_weights()

pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/ghibli.safetensors",
    adapter_name="ghibli",
    token=HF_TOKEN
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/irasutoya.safetensors",
    adapter_name="irasutoya",
    token=HF_TOKEN
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/simpsons.safetensors",
    adapter_name="simpsons",
    token=HF_TOKEN
)
pipe.load_lora_weights(
    "Yuanshi/OminiControlStyle",
    weight_name=f"v0/snoopy.safetensors",
    adapter_name="snoopy",
    token=HF_TOKEN
)



def generate_image(
    image,
    style,
    inference_mode,
    image_guidance,
    image_ratio,
    steps,
    use_random_seed,
    seed,
):
    # Prepare Condition
    def resize(img, factor=16):
        w, h = img.size
        new_w, new_h = w // factor * factor, h // factor * factor
        padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
        img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
        return img

    # Set Adapter
    activate_adapter_name = {
        "Studio Ghibli": "ghibli",
        "Irasutoya Illustration": "irasutoya",
        "The Simpsons": "simpsons",
        "Snoopy": "snoopy",
    }[style]
    pipe.set_adapters(activate_adapter_name)

    factor = 512 / max(image.size)
    image = resize(
        image.resize(
            (int(image.size[0] * factor), int(image.size[1] * factor)),
            Image.LANCZOS,
        )
    )
    delta = -image.size[0] // 16
    condition = Condition(
        "subject",
        # activate_adapter_name,
        image,
        position_delta=(0, delta),
    )

    # Prepare seed
    if use_random_seed:
        seed = random.randint(0, 2**32 - 1)
    seed_everything(seed)

    # Image guidance scale
    image_guidance = 1.0 if inference_mode == "Fast" else image_guidance

    # Output size
    if image_ratio == "Auto":
        r = image.size[0] / image.size[1]
        ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
    else:
        ratio = {
            "Square(1:1)": 1,
            "Portrait(2:3)": 0.67,
            "Landscape(3:2)": 1.5,
        }[image_ratio]
    width, height = {
        0.67: (640, 960),
        1: (640, 640),
        1.5: (960, 640),
    }[ratio]

    print(
        f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Size: {width}x{height}"
    )
    # Generate
    result_img = generate(
        pipe,
        prompt="",
        conditions=[condition],
        num_inference_steps=steps,
        width=width,
        height=height,
        image_guidance_scale=image_guidance,
        default_lora=True,
        max_sequence_length=32,
    ).images[0]

    return result_img