Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- app.py +163 -4
- ominicontrol.py +129 -0
app.py
CHANGED
@@ -1,7 +1,166 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from ominicontrol import generate_image
|
3 |
|
4 |
+
import spaces
|
|
|
5 |
|
6 |
+
USE_ZERO_GPU = True
|
7 |
+
|
8 |
+
css = """
|
9 |
+
.inputPanel {
|
10 |
+
width: 320px;
|
11 |
+
display: flex;
|
12 |
+
align-items: center;
|
13 |
+
}
|
14 |
+
.outputPanel {
|
15 |
+
display: flex;
|
16 |
+
align-items: center;
|
17 |
+
}
|
18 |
+
.hint {
|
19 |
+
font-size: 14px;
|
20 |
+
color: #777;
|
21 |
+
# border: 1px solid #ccc;
|
22 |
+
padding: 4px;
|
23 |
+
border-radius: 5px;
|
24 |
+
# background-color: #efefef;
|
25 |
+
}
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
def style_transfer(image, style):
|
30 |
+
return image
|
31 |
+
|
32 |
+
|
33 |
+
styles = [
|
34 |
+
"Studio Ghibli",
|
35 |
+
"Irasutoya Illustration",
|
36 |
+
"The Simpsons",
|
37 |
+
"Snoopy",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
def gradio_interface():
|
42 |
+
with gr.Blocks(css=css) as demo:
|
43 |
+
gr.Markdown("# 🌍 OminiControl (Image Stylization)")
|
44 |
+
with gr.Row(equal_height=False):
|
45 |
+
with gr.Column(variant="panel", elem_classes="inputPanel"):
|
46 |
+
original_image = gr.Image(
|
47 |
+
type="pil",
|
48 |
+
label="Condition Image",
|
49 |
+
width=400,
|
50 |
+
height=400,
|
51 |
+
)
|
52 |
+
style = gr.Radio(
|
53 |
+
styles,
|
54 |
+
label="🎨 Select Style",
|
55 |
+
value=styles[0],
|
56 |
+
)
|
57 |
+
# Advanced settings
|
58 |
+
with gr.Accordion(
|
59 |
+
"⚙️ Advanced Settings", open=False
|
60 |
+
) as advanced_settings:
|
61 |
+
inference_mode = gr.Radio(
|
62 |
+
["High Quality", "Fast"],
|
63 |
+
value="High Quality",
|
64 |
+
label="Generating Mode",
|
65 |
+
)
|
66 |
+
image_ratio = gr.Radio(
|
67 |
+
["Auto", "Square(1:1)", "Portrait(2:3)", "Landscape(3:2)"],
|
68 |
+
label="Image Ratio",
|
69 |
+
value="Auto",
|
70 |
+
)
|
71 |
+
use_random_seed = gr.Checkbox(label="Use Random Seed", value=True)
|
72 |
+
seed = gr.Number(
|
73 |
+
label="Seed",
|
74 |
+
value=42,
|
75 |
+
visible=(not use_random_seed.value),
|
76 |
+
)
|
77 |
+
use_random_seed.change(
|
78 |
+
lambda x: gr.update(visible=(not x)),
|
79 |
+
use_random_seed,
|
80 |
+
seed,
|
81 |
+
show_progress="hidden",
|
82 |
+
)
|
83 |
+
image_guidance = gr.Slider(
|
84 |
+
label="Image Guidance",
|
85 |
+
minimum=1.1,
|
86 |
+
maximum=5,
|
87 |
+
value=1.5,
|
88 |
+
step=0.1,
|
89 |
+
)
|
90 |
+
steps = gr.Slider(
|
91 |
+
label="Steps",
|
92 |
+
minimum=10,
|
93 |
+
maximum=50,
|
94 |
+
value=20,
|
95 |
+
step=1,
|
96 |
+
)
|
97 |
+
inference_mode.change(
|
98 |
+
lambda x: gr.update(interactive=(x == "High Quality")),
|
99 |
+
inference_mode,
|
100 |
+
image_guidance,
|
101 |
+
show_progress="hidden",
|
102 |
+
)
|
103 |
+
|
104 |
+
btn = gr.Button("Generate Image")
|
105 |
+
|
106 |
+
with gr.Column(elem_classes="outputPanel"):
|
107 |
+
output_images = gr.Image(
|
108 |
+
type="pil",
|
109 |
+
width=640,
|
110 |
+
height=640,
|
111 |
+
label="Output Image",
|
112 |
+
)
|
113 |
+
|
114 |
+
btn.click(
|
115 |
+
fn=infer,
|
116 |
+
inputs=[
|
117 |
+
style,
|
118 |
+
original_image,
|
119 |
+
inference_mode,
|
120 |
+
image_guidance,
|
121 |
+
image_ratio,
|
122 |
+
use_random_seed,
|
123 |
+
seed,
|
124 |
+
steps,
|
125 |
+
],
|
126 |
+
outputs=output_images,
|
127 |
+
)
|
128 |
+
|
129 |
+
return demo
|
130 |
+
|
131 |
+
|
132 |
+
def infer(
|
133 |
+
style,
|
134 |
+
original_image,
|
135 |
+
inference_mode,
|
136 |
+
image_guidance,
|
137 |
+
image_ratio,
|
138 |
+
use_random_seed,
|
139 |
+
seed,
|
140 |
+
steps,
|
141 |
+
):
|
142 |
+
print(
|
143 |
+
f"Style: {style}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Image Ratio: {image_ratio}, Use Random Seed: {use_random_seed}, Seed: {seed}"
|
144 |
+
)
|
145 |
+
result_image = generate_image(
|
146 |
+
image=original_image,
|
147 |
+
style=style,
|
148 |
+
inference_mode=inference_mode,
|
149 |
+
image_guidance=image_guidance,
|
150 |
+
image_ratio=image_ratio,
|
151 |
+
use_random_seed=use_random_seed,
|
152 |
+
seed=seed,
|
153 |
+
steps=steps,
|
154 |
+
)
|
155 |
+
return result_image
|
156 |
+
|
157 |
+
|
158 |
+
if USE_ZERO_GPU:
|
159 |
+
infer = spaces.GPU(infer, duration=360)
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
demo = gradio_interface()
|
163 |
+
demo.launch(
|
164 |
+
debug=True,
|
165 |
+
server_name="0.0.0.0",
|
166 |
+
)
|
ominicontrol.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.pipelines import FluxPipeline
|
3 |
+
from OminiControl.src.flux.condition import Condition
|
4 |
+
from PIL import Image
|
5 |
+
import random
|
6 |
+
import os
|
7 |
+
|
8 |
+
from OminiControl.src.flux.generate import generate, seed_everything
|
9 |
+
|
10 |
+
HF_TOKEN=os.getenv("HF_TOKEN")
|
11 |
+
|
12 |
+
print("Loading model...")
|
13 |
+
pipe = FluxPipeline.from_pretrained(
|
14 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN
|
15 |
+
)
|
16 |
+
pipe = pipe.to("cuda")
|
17 |
+
|
18 |
+
pipe.unload_lora_weights()
|
19 |
+
|
20 |
+
pipe.load_lora_weights(
|
21 |
+
"Yuanshi/OminiControlStyle",
|
22 |
+
weight_name=f"v0/ghibli.safetensors",
|
23 |
+
adapter_name="ghibli",
|
24 |
+
use_auth_token=HF_TOKEN
|
25 |
+
)
|
26 |
+
pipe.load_lora_weights(
|
27 |
+
"Yuanshi/OminiControlStyle",
|
28 |
+
weight_name=f"v0/irasutoya.safetensors",
|
29 |
+
adapter_name="irasutoya",
|
30 |
+
use_auth_token=HF_TOKEN
|
31 |
+
)
|
32 |
+
pipe.load_lora_weights(
|
33 |
+
"Yuanshi/OminiControlStyle",
|
34 |
+
weight_name=f"v0/simpsons.safetensors",
|
35 |
+
adapter_name="simpsons",
|
36 |
+
use_auth_token=HF_TOKEN
|
37 |
+
)
|
38 |
+
pipe.load_lora_weights(
|
39 |
+
"Yuanshi/OminiControlStyle",
|
40 |
+
weight_name=f"v0/snoopy.safetensors",
|
41 |
+
adapter_name="snoopy",
|
42 |
+
use_auth_token=HF_TOKEN
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
def generate_image(
|
48 |
+
image,
|
49 |
+
style,
|
50 |
+
inference_mode,
|
51 |
+
image_guidance,
|
52 |
+
image_ratio,
|
53 |
+
steps,
|
54 |
+
use_random_seed,
|
55 |
+
seed,
|
56 |
+
):
|
57 |
+
# Prepare Condition
|
58 |
+
def resize(img, factor=16):
|
59 |
+
w, h = img.size
|
60 |
+
new_w, new_h = w // factor * factor, h // factor * factor
|
61 |
+
padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2
|
62 |
+
img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))
|
63 |
+
return img
|
64 |
+
|
65 |
+
# Set Adapter
|
66 |
+
activate_adapter_name = {
|
67 |
+
"Studio Ghibli": "ghibli",
|
68 |
+
"Irasutoya Illustration": "irasutoya",
|
69 |
+
"The Simpsons": "simpsons",
|
70 |
+
"Snoopy": "snoopy",
|
71 |
+
}[style]
|
72 |
+
pipe.set_adapters(activate_adapter_name)
|
73 |
+
|
74 |
+
factor = 512 / max(image.size)
|
75 |
+
image = resize(
|
76 |
+
image.resize(
|
77 |
+
(int(image.size[0] * factor), int(image.size[1] * factor)),
|
78 |
+
Image.LANCZOS,
|
79 |
+
)
|
80 |
+
)
|
81 |
+
delta = -image.size[0] // 16
|
82 |
+
condition = Condition(
|
83 |
+
"subject",
|
84 |
+
# activate_adapter_name,
|
85 |
+
image,
|
86 |
+
position_delta=(0, delta),
|
87 |
+
)
|
88 |
+
|
89 |
+
# Prepare seed
|
90 |
+
if use_random_seed:
|
91 |
+
seed = random.randint(0, 2**32 - 1)
|
92 |
+
seed_everything(seed)
|
93 |
+
|
94 |
+
# Image guidance scale
|
95 |
+
image_guidance = 1.0 if inference_mode == "Fast" else image_guidance
|
96 |
+
|
97 |
+
# Output size
|
98 |
+
if image_ratio == "Auto":
|
99 |
+
r = image.size[0] / image.size[1]
|
100 |
+
ratio = min([0.67, 1, 1.5], key=lambda x: abs(x - r))
|
101 |
+
else:
|
102 |
+
ratio = {
|
103 |
+
"Square(1:1)": 1,
|
104 |
+
"Portrait(2:3)": 0.67,
|
105 |
+
"Landscape(3:2)": 1.5,
|
106 |
+
}[image_ratio]
|
107 |
+
width, height = {
|
108 |
+
0.67: (640, 960),
|
109 |
+
1: (640, 640),
|
110 |
+
1.5: (960, 640),
|
111 |
+
}[ratio]
|
112 |
+
|
113 |
+
print(
|
114 |
+
f"Image Ratio: {image_ratio}, Inference Mode: {inference_mode}, Image Guidance: {image_guidance}, Seed: {seed}, Steps: {steps}, Size: {width}x{height}"
|
115 |
+
)
|
116 |
+
# Generate
|
117 |
+
result_img = generate(
|
118 |
+
pipe,
|
119 |
+
prompt="",
|
120 |
+
conditions=[condition],
|
121 |
+
num_inference_steps=steps,
|
122 |
+
width=width,
|
123 |
+
height=height,
|
124 |
+
image_guidance_scale=image_guidance,
|
125 |
+
default_lora=True,
|
126 |
+
max_sequence_length=32,
|
127 |
+
).images[0]
|
128 |
+
|
129 |
+
return result_img
|