File size: 10,432 Bytes
efc4793 28fe915 596f852 efc4793 28fe915 596f852 28fe915 596f852 28fe915 f0cb7f7 28fe915 596f852 28fe915 596f852 28fe915 596f852 28fe915 596f852 28fe915 596f852 28fe915 ab7af96 28fe915 f0cb7f7 28fe915 596f852 28fe915 596f852 28fe915 596f852 28fe915 f0cb7f7 28fe915 596f852 28fe915 f0cb7f7 28fe915 ab7af96 596f852 ab7af96 596f852 ab7af96 596f852 f0cb7f7 ab7af96 28fe915 ab7af96 596f852 ab7af96 596f852 ab7af96 596f852 28fe915 f0cb7f7 596f852 f0cb7f7 596f852 f0cb7f7 28fe915 ab7af96 596f852 ab7af96 596f852 ab7af96 28fe915 596f852 ab7af96 6fc36a2 ab7af96 6fc36a2 ab7af96 f3cf000 596f852 6fc36a2 f3cf000 6fc36a2 f3cf000 44b51fd f3cf000 6fc36a2 596f852 f3cf000 6fc36a2 596f852 f3cf000 6fc36a2 596f852 f3cf000 6fc36a2 596f852 f3cf000 6fc36a2 596f852 f3cf000 44b51fd 596f852 ab7af96 596f852 ab7af96 f3cf000 ab7af96 28fe915 596f852 28fe915 f0cb7f7 28fe915 ab7af96 28fe915 f0cb7f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import pandas as pd
import numpy as np
from textblob import TextBlob
from typing import List, Dict, Tuple
from dataclasses import dataclass
from pathlib import Path
import logging
import re
from datetime import datetime
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class RecommendationWeights:
visibility: float
sentiment: float
popularity: float
class TweetPreprocessor:
def __init__(self, data_path: Path):
"""Initialize the preprocessor with data path."""
self.data = self._load_data(data_path)
@staticmethod
def _load_data(data_path: Path) -> pd.DataFrame:
"""Load and validate the dataset."""
try:
data = pd.read_csv(data_path)
required_columns = {'Text', 'Retweets', 'Likes'}
if not required_columns.issubset(data.columns):
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
return data
except Exception as e:
logger.error(f"Error loading data: {e}")
raise
def _clean_text(self, text: str) -> str:
"""Clean text content."""
if pd.isna(text) or len(str(text).strip()) < 10:
return ""
text = re.sub(r'http\S+|www.\S+', '', str(text))
text = re.sub(r'[^\w\s]', '', text)
text = ' '.join(text.split())
return text
def calculate_metrics(self) -> pd.DataFrame:
"""Calculate all metrics for tweets."""
self.data['Clean_Text'] = self.data['Text'].apply(self._clean_text)
self.data = self.data[self.data['Clean_Text'].str.len() > 0]
self.data['Sentiment'] = self.data['Clean_Text'].apply(self._get_sentiment)
self.data['Popularity'] = self._normalize_popularity()
return self.data
@staticmethod
def _get_sentiment(text: str) -> float:
"""Calculate sentiment polarity for a text."""
try:
return TextBlob(str(text)).sentiment.polarity
except Exception as e:
logger.warning(f"Error calculating sentiment: {e}")
return 0.0
def _normalize_popularity(self) -> pd.Series:
"""Normalize popularity scores."""
popularity = self.data['Retweets'] + self.data['Likes']
return (popularity - popularity.min()) / (popularity.max() - popularity.min() + 1e-6)
class RecommendationSystem:
def __init__(self, data_path: Path):
self.preprocessor = TweetPreprocessor(data_path)
self.data = None
self.setup_system()
def setup_system(self):
"""Initialize the system with preprocessed data."""
self.data = self.preprocessor.calculate_metrics()
def recalculate_scores(self, weights: RecommendationWeights):
"""Recalculate scores based on new weights."""
normalized_weights = self._normalize_weights(weights)
self.data['Credibility'] = np.random.choice([0, 1], size=len(self.data), p=[0.3, 0.7])
self.data['Final_Score'] = (
self.data['Credibility'] * normalized_weights.visibility +
self.data['Sentiment'] * normalized_weights.sentiment +
self.data['Popularity'] * normalized_weights.popularity
)
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
"""Get tweet recommendations based on weights."""
if not self._validate_weights(weights):
return {"error": "Invalid weights provided"}
self.recalculate_scores(weights)
top_recommendations = (
self.data.nlargest(num_recommendations, 'Final_Score')
)
return self._format_recommendations(top_recommendations)
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
"""Format recommendations for display."""
formatted_results = []
for _, row in recommendations.iterrows():
score_details = {
"score": f"{row['Final_Score']:.2f}",
"credibility": "Reliable" if row['Credibility'] > 0 else "Uncertain",
"sentiment": self._get_sentiment_label(row['Sentiment']),
"popularity": f"{row['Popularity']:.2f}",
"engagement": f"Likes {row['Likes']} · Retweets {row['Retweets']}"
}
formatted_results.append({
"text": row['Clean_Text'],
"scores": score_details
})
return {
"recommendations": formatted_results,
"score_explanation": self._get_score_explanation()
}
@staticmethod
def _get_sentiment_label(sentiment_score: float) -> str:
"""Convert sentiment score to label."""
if sentiment_score > 0.3:
return "Positive"
elif sentiment_score < -0.3:
return "Negative"
return "Neutral"
@staticmethod
def _validate_weights(weights: RecommendationWeights) -> bool:
"""Validate that weights are non-negative."""
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
@staticmethod
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
"""Normalize weights to sum to 1."""
total = weights.visibility + weights.sentiment + weights.popularity
if total == 0:
return RecommendationWeights(1/3, 1/3, 1/3)
return RecommendationWeights(
visibility=weights.visibility / total,
sentiment=weights.sentiment / total,
popularity=weights.popularity / total
)
@staticmethod
def _get_score_explanation() -> Dict[str, str]:
"""Provide explanation for different score components."""
return {
"Credibility": "Content reliability assessment",
"Sentiment": "Text emotional analysis result",
"Popularity": "Score based on likes and retweets"
}
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
"""Create and configure the Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# Tweet Recommendation System
Adjust weights to get personalized recommendations
Note: To protect user privacy, some tweet content has been redacted or anonymized.
""")
with gr.Row():
with gr.Column(scale=1):
visibility_weight = gr.Slider(0, 1, 0.5, label="Credibility Weight", info="Adjust importance of content credibility")
sentiment_weight = gr.Slider(0, 1, 0.3, label="Sentiment Weight", info="Adjust importance of emotional tone")
popularity_weight = gr.Slider(0, 1, 0.2, label="Popularity Weight", info="Adjust importance of engagement metrics")
submit_btn = gr.Button("Get Recommendations", variant="primary")
with gr.Column(scale=2):
output_html = gr.HTML()
def format_recommendations(raw_recommendations):
html = '<div style="font-family: sans-serif;">'
html += '''
<div style="margin-bottom: 20px; padding: 15px; background-color: #1a1a1a; color: white; border-radius: 8px;">
<h3 style="margin-top: 0;">Score Guide</h3>
<ul style="margin: 0;">
<li><strong>Credibility</strong>: Assessment of content reliability</li>
<li><strong>Sentiment</strong>: Text emotional analysis (Positive/Negative/Neutral)</li>
<li><strong>Popularity</strong>: Normalized score based on likes and retweets</li>
</ul>
</div>
'''
for i, rec in enumerate(raw_recommendations["recommendations"], 1):
scores = rec["scores"]
html += f'''
<div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
<div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em;">
<span style="padding: 3px 8px; background-color: #1976d2; color: white; border-radius: 4px;">
Score: {scores["score"]}
</span>
<span style="padding: 3px 8px; background-color: #2e7d32; color: white; border-radius: 4px;">
Credibility: {scores["credibility"]}
</span>
<span style="padding: 3px 8px; background-color: #ed6c02; color: white; border-radius: 4px;">
Sentiment: {scores["sentiment"]}
</span>
<span style="padding: 3px 8px; background-color: #d32f2f; color: white; border-radius: 4px;">
Popularity: {scores["popularity"]}
</span>
<span style="padding: 3px 8px; background-color: #7b1fa2; color: white; border-radius: 4px;">
Engagement: {scores["engagement"]}
</span>
</div>
</div>
'''
html += '</div>'
return html
def get_recommendations_with_weights(v, s, p):
"""Get recommendations with current weights."""
weights = RecommendationWeights(v, s, p)
return format_recommendations(recommendation_system.get_recommendations(weights))
submit_btn.click(
fn=get_recommendations_with_weights,
inputs=[visibility_weight, sentiment_weight, popularity_weight],
outputs=output_html
)
return interface
def main():
"""Main function to run the application."""
try:
recommendation_system = RecommendationSystem(
data_path=Path('twitter_dataset.csv')
)
interface = create_gradio_interface(recommendation_system)
interface.launch()
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
if __name__ == "__main__":
main() |