File size: 9,583 Bytes
fe29479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8acc8a0
fe29479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import pdb
import threading
import os
import time

import numpy as np
import onnxruntime

import torch
from torch.cuda import nvtx
from collections import OrderedDict
import platform

import spaces 

try:
    import tensorrt as trt
    import ctypes
except ModuleNotFoundError:
    print("No TensorRT Found")

numpy_to_torch_dtype_dict = {
    np.uint8: torch.uint8,
    np.int8: torch.int8,
    np.int16: torch.int16,
    np.int32: torch.int32,
    np.int64: torch.int64,
    np.float16: torch.float16,
    np.float32: torch.float32,
    np.float64: torch.float64,
    np.complex64: torch.complex64,
    np.complex128: torch.complex128,
}
if np.version.full_version >= "1.24.0":
    numpy_to_torch_dtype_dict[np.bool_] = torch.bool
else:
    numpy_to_torch_dtype_dict[np.bool] = torch.bool


class TensorRTPredictor:
    """
    Implements inference for the EfficientDet TensorRT engine.
    """
    @spaces.GPU
    def __init__(self, **kwargs):
        """
        :param engine_path: The path to the serialized engine to load from disk.
        """
        if platform.system().lower() == 'linux':
            ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/libgrid_sample_3d_plugin.so", mode=ctypes.RTLD_GLOBAL)
        else:
            ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/grid_sample_3d_plugin.dll", mode=ctypes.RTLD_GLOBAL)
        # Load TRT engine
        self.logger = trt.Logger(trt.Logger.VERBOSE)
        trt.init_libnvinfer_plugins(self.logger, "")
        engine_path = os.path.abspath(kwargs.get("model_path", None))
        print('engine_path', engine_path)
        self.debug = kwargs.get("debug", False)
        assert engine_path, f"model:{engine_path} must exist!"
        print(f"loading trt model:{engine_path}")
        with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
            assert runtime
            self.engine = runtime.deserialize_cuda_engine(f.read())
            print('self.engine', self.engine)
        assert self.engine
        self.context = self.engine.create_execution_context()
        assert self.context

        # Setup I/O bindings
        self.inputs = []
        self.outputs = []
        self.tensors = OrderedDict()

        # TODO: 支持动态shape输入
        for idx in range(self.engine.num_io_tensors):
            name = self.engine[idx]
            is_input = self.engine.get_tensor_mode(name).name == "INPUT"
            shape = self.engine.get_tensor_shape(name)
            dtype = trt.nptype(self.engine.get_tensor_dtype(name))

            binding = {
                "index": idx,
                "name": name,
                "dtype": dtype,
                "shape": list(shape)
            }
            if is_input:
                self.inputs.append(binding)
            else:
                self.outputs.append(binding)

        assert len(self.inputs) > 0
        assert len(self.outputs) > 0
        self.allocate_max_buffers()

    def allocate_max_buffers(self, device="cuda"):
        nvtx.range_push("allocate_max_buffers")
        # 目前仅支持 batch 维度的动态处理
        batch_size = 1
        for idx in range(self.engine.num_io_tensors):
            binding = self.engine[idx]
            shape = self.engine.get_tensor_shape(binding)
            is_input = self.engine.get_tensor_mode(binding).name == "INPUT"
            if -1 in shape:
                if is_input:
                    shape = self.engine.get_tensor_profile_shape(binding, 0)[-1]
                    batch_size = shape[0]
                else:
                    shape[0] = batch_size
            dtype = trt.nptype(self.engine.get_tensor_dtype(binding))
            tensor = torch.empty(
                tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
            ).to(device=device)
            self.tensors[binding] = tensor
        nvtx.range_pop()

    def input_spec(self):
        """
        Get the specs for the input tensor of the network. Useful to prepare memory allocations.
        :return: Two items, the shape of the input tensor and its (numpy) datatype.
        """
        specs = []
        for i, o in enumerate(self.inputs):
            specs.append((o["name"], o['shape'], o['dtype']))
            if self.debug:
                print(f"trt input {i} -> {o['name']} -> {o['shape']}")
        return specs

    def output_spec(self):
        """
        Get the specs for the output tensors of the network. Useful to prepare memory allocations.
        :return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
        """
        specs = []
        for i, o in enumerate(self.outputs):
            specs.append((o["name"], o['shape'], o['dtype']))
            if self.debug:
                print(f"trt output {i} -> {o['name']} -> {o['shape']}")
        return specs

    def adjust_buffer(self, feed_dict):
        nvtx.range_push("adjust_buffer")
        for name, buf in feed_dict.items():
            input_tensor = self.tensors[name]
            current_shape = list(buf.shape)
            slices = tuple(slice(0, dim) for dim in current_shape)
            input_tensor[slices].copy_(buf)
            self.context.set_input_shape(name, current_shape)
        nvtx.range_pop()

    def predict(self, feed_dict, stream):
        """
        Execute inference on a batch of images.
        :param data: A list of inputs as numpy arrays.
        :return A list of outputs as numpy arrays.
        """
        nvtx.range_push("set_tensors")
        self.adjust_buffer(feed_dict)
        for name, tensor in self.tensors.items():
            self.context.set_tensor_address(name, tensor.data_ptr())
        nvtx.range_pop()
        nvtx.range_push("execute")
        noerror = self.context.execute_async_v3(stream)
        if not noerror:
            raise ValueError("ERROR: inference failed.")
        nvtx.range_pop()
        return self.tensors

    def __del__(self):
        del self.engine
        del self.context
        del self.inputs
        del self.outputs
        del self.tensors

class OnnxRuntimePredictor:
    """
    OnnxRuntime Prediction
    """

    def __init__(self, **kwargs):
        model_path = kwargs.get("model_path", "")  # 用模型路径区分是否是一样的实例
        assert os.path.exists(model_path), "model path must exist!"
        # print("loading ort model:{}".format(model_path))
        self.debug = kwargs.get("debug", False)
        providers = ['CUDAExecutionProvider', 'CoreMLExecutionProvider', 'CPUExecutionProvider']

        print(f"OnnxRuntime use {providers}")
        opts = onnxruntime.SessionOptions()
        # opts.inter_op_num_threads = kwargs.get("num_threads", 4)
        # opts.intra_op_num_threads = kwargs.get("num_threads", 4)
        # opts.log_severity_level = 3

        self.onnx_model = onnxruntime.InferenceSession(model_path, providers=providers, sess_options=opts)
        self.inputs = self.onnx_model.get_inputs()
        self.outputs = self.onnx_model.get_outputs()

    def input_spec(self):
        """
        Get the specs for the input tensor of the network. Useful to prepare memory allocations.
        :return: Two items, the shape of the input tensor and its (numpy) datatype.
        """
        specs = []
        for i, o in enumerate(self.inputs):
            specs.append((o.name, o.shape, o.type))
            if self.debug:
                print(f"ort {i} -> {o.name} -> {o.shape}")
        return specs

    def output_spec(self):
        """
        Get the specs for the output tensors of the network. Useful to prepare memory allocations.
        :return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
        """
        specs = []
        for i, o in enumerate(self.outputs):
            specs.append((o.name, o.shape, o.type))
            if self.debug:
                print(f"ort output {i} -> {o.name} -> {o.shape}")
        return specs

    def predict(self, *data):
        input_feeds = {}
        for i in range(len(data)):
            if self.inputs[i].type == 'tensor(float16)':
                input_feeds[self.inputs[i].name] = data[i].astype(np.float16)
            else:
                input_feeds[self.inputs[i].name] = data[i].astype(np.float32)
        results = self.onnx_model.run(None, input_feeds)
        return results

    def __del__(self):
        del self.onnx_model
        self.onnx_model = None


class OnnxRuntimePredictorSingleton(OnnxRuntimePredictor):
    """
    单例模式,防止模型被加载多次
    """
    _instance_lock = threading.Lock()
    _instance = {}

    def __new__(cls, *args, **kwargs):
        model_path = kwargs.get("model_path", "")  # 用模型路径区分是否是一样的实例
        assert os.path.exists(model_path), "model path must exist!"
        # 单例模式,避免重复加载模型
        with OnnxRuntimePredictorSingleton._instance_lock:
            if model_path not in OnnxRuntimePredictorSingleton._instance or \
                    OnnxRuntimePredictorSingleton._instance[model_path].onnx_model is None:
                OnnxRuntimePredictorSingleton._instance[model_path] = OnnxRuntimePredictor(**kwargs)

        return OnnxRuntimePredictorSingleton._instance[model_path]


def get_predictor(**kwargs):
    predict_type = kwargs.get("predict_type", "trt")
    if predict_type == "ort":
        return OnnxRuntimePredictorSingleton(**kwargs)
    elif predict_type == "trt":
        return TensorRTPredictor(**kwargs)
    else:
        raise NotImplementedError