Spaces:
Sleeping
Sleeping
Update difpoint/src/models/predictor.py
Browse files- difpoint/src/models/predictor.py +266 -263
difpoint/src/models/predictor.py
CHANGED
|
@@ -1,263 +1,266 @@
|
|
| 1 |
-
import pdb
|
| 2 |
-
import threading
|
| 3 |
-
import os
|
| 4 |
-
import time
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
import onnxruntime
|
| 8 |
-
|
| 9 |
-
import torch
|
| 10 |
-
from torch.cuda import nvtx
|
| 11 |
-
from collections import OrderedDict
|
| 12 |
-
import platform
|
| 13 |
-
|
| 14 |
-
import spaces
|
| 15 |
-
|
| 16 |
-
try:
|
| 17 |
-
import tensorrt as trt
|
| 18 |
-
import ctypes
|
| 19 |
-
except ModuleNotFoundError:
|
| 20 |
-
print("No TensorRT Found")
|
| 21 |
-
|
| 22 |
-
numpy_to_torch_dtype_dict = {
|
| 23 |
-
np.uint8: torch.uint8,
|
| 24 |
-
np.int8: torch.int8,
|
| 25 |
-
np.int16: torch.int16,
|
| 26 |
-
np.int32: torch.int32,
|
| 27 |
-
np.int64: torch.int64,
|
| 28 |
-
np.float16: torch.float16,
|
| 29 |
-
np.float32: torch.float32,
|
| 30 |
-
np.float64: torch.float64,
|
| 31 |
-
np.complex64: torch.complex64,
|
| 32 |
-
np.complex128: torch.complex128,
|
| 33 |
-
}
|
| 34 |
-
if np.version.full_version >= "1.24.0":
|
| 35 |
-
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
|
| 36 |
-
else:
|
| 37 |
-
numpy_to_torch_dtype_dict[np.bool] = torch.bool
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
class TensorRTPredictor:
|
| 41 |
-
"""
|
| 42 |
-
Implements inference for the EfficientDet TensorRT engine.
|
| 43 |
-
"""
|
| 44 |
-
@spaces.GPU
|
| 45 |
-
def __init__(self, **kwargs):
|
| 46 |
-
"""
|
| 47 |
-
:param engine_path: The path to the serialized engine to load from disk.
|
| 48 |
-
"""
|
| 49 |
-
if platform.system().lower() == 'linux':
|
| 50 |
-
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/libgrid_sample_3d_plugin.so", mode=ctypes.RTLD_GLOBAL)
|
| 51 |
-
else:
|
| 52 |
-
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/grid_sample_3d_plugin.dll", mode=ctypes.RTLD_GLOBAL)
|
| 53 |
-
# Load TRT engine
|
| 54 |
-
self.logger = trt.Logger(trt.Logger.VERBOSE)
|
| 55 |
-
trt.init_libnvinfer_plugins(self.logger, "")
|
| 56 |
-
engine_path = os.path.abspath(kwargs.get("model_path", None))
|
| 57 |
-
print('engine_path', engine_path)
|
| 58 |
-
self.debug = kwargs.get("debug", False)
|
| 59 |
-
assert engine_path, f"model:{engine_path} must exist!"
|
| 60 |
-
print(f"loading trt model:{engine_path}")
|
| 61 |
-
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
|
| 62 |
-
assert runtime
|
| 63 |
-
self.engine = runtime.deserialize_cuda_engine(f.read())
|
| 64 |
-
print('self.engine', self.engine)
|
| 65 |
-
assert self.engine
|
| 66 |
-
self.context = self.engine.create_execution_context()
|
| 67 |
-
assert self.context
|
| 68 |
-
|
| 69 |
-
# Setup I/O bindings
|
| 70 |
-
self.inputs = []
|
| 71 |
-
self.outputs = []
|
| 72 |
-
self.tensors = OrderedDict()
|
| 73 |
-
|
| 74 |
-
# TODO: 支持动态shape输入
|
| 75 |
-
for idx in range(self.engine.num_io_tensors):
|
| 76 |
-
name = self.engine[idx]
|
| 77 |
-
is_input = self.engine.get_tensor_mode(name).name == "INPUT"
|
| 78 |
-
shape = self.engine.get_tensor_shape(name)
|
| 79 |
-
dtype = trt.nptype(self.engine.get_tensor_dtype(name))
|
| 80 |
-
|
| 81 |
-
binding = {
|
| 82 |
-
"index": idx,
|
| 83 |
-
"name": name,
|
| 84 |
-
"dtype": dtype,
|
| 85 |
-
"shape": list(shape)
|
| 86 |
-
}
|
| 87 |
-
if is_input:
|
| 88 |
-
self.inputs.append(binding)
|
| 89 |
-
else:
|
| 90 |
-
self.outputs.append(binding)
|
| 91 |
-
|
| 92 |
-
assert len(self.inputs) > 0
|
| 93 |
-
assert len(self.outputs) > 0
|
| 94 |
-
self.allocate_max_buffers()
|
| 95 |
-
|
| 96 |
-
def allocate_max_buffers(self, device="cuda"):
|
| 97 |
-
nvtx.range_push("allocate_max_buffers")
|
| 98 |
-
# 目前仅支持 batch 维度的动态处理
|
| 99 |
-
batch_size = 1
|
| 100 |
-
for idx in range(self.engine.num_io_tensors):
|
| 101 |
-
binding = self.engine[idx]
|
| 102 |
-
shape = self.engine.get_tensor_shape(binding)
|
| 103 |
-
is_input = self.engine.get_tensor_mode(binding).name == "INPUT"
|
| 104 |
-
if -1 in shape:
|
| 105 |
-
if is_input:
|
| 106 |
-
shape = self.engine.get_tensor_profile_shape(binding, 0)[-1]
|
| 107 |
-
batch_size = shape[0]
|
| 108 |
-
else:
|
| 109 |
-
shape[0] = batch_size
|
| 110 |
-
dtype = trt.nptype(self.engine.get_tensor_dtype(binding))
|
| 111 |
-
tensor = torch.empty(
|
| 112 |
-
tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
|
| 113 |
-
).to(device=device)
|
| 114 |
-
self.tensors[binding] = tensor
|
| 115 |
-
nvtx.range_pop()
|
| 116 |
-
|
| 117 |
-
def input_spec(self):
|
| 118 |
-
"""
|
| 119 |
-
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
|
| 120 |
-
:return: Two items, the shape of the input tensor and its (numpy) datatype.
|
| 121 |
-
"""
|
| 122 |
-
specs = []
|
| 123 |
-
for i, o in enumerate(self.inputs):
|
| 124 |
-
specs.append((o["name"], o['shape'], o['dtype']))
|
| 125 |
-
if self.debug:
|
| 126 |
-
print(f"trt input {i} -> {o['name']} -> {o['shape']}")
|
| 127 |
-
return specs
|
| 128 |
-
|
| 129 |
-
def output_spec(self):
|
| 130 |
-
"""
|
| 131 |
-
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
|
| 132 |
-
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
|
| 133 |
-
"""
|
| 134 |
-
specs = []
|
| 135 |
-
for i, o in enumerate(self.outputs):
|
| 136 |
-
specs.append((o["name"], o['shape'], o['dtype']))
|
| 137 |
-
if self.debug:
|
| 138 |
-
print(f"trt output {i} -> {o['name']} -> {o['shape']}")
|
| 139 |
-
return specs
|
| 140 |
-
|
| 141 |
-
def adjust_buffer(self, feed_dict):
|
| 142 |
-
nvtx.range_push("adjust_buffer")
|
| 143 |
-
for name, buf in feed_dict.items():
|
| 144 |
-
input_tensor = self.tensors[name]
|
| 145 |
-
current_shape = list(buf.shape)
|
| 146 |
-
slices = tuple(slice(0, dim) for dim in current_shape)
|
| 147 |
-
input_tensor[slices].copy_(buf)
|
| 148 |
-
self.context.set_input_shape(name, current_shape)
|
| 149 |
-
nvtx.range_pop()
|
| 150 |
-
|
| 151 |
-
def predict(self, feed_dict, stream):
|
| 152 |
-
"""
|
| 153 |
-
Execute inference on a batch of images.
|
| 154 |
-
:param data: A list of inputs as numpy arrays.
|
| 155 |
-
:return A list of outputs as numpy arrays.
|
| 156 |
-
"""
|
| 157 |
-
nvtx.range_push("set_tensors")
|
| 158 |
-
self.adjust_buffer(feed_dict)
|
| 159 |
-
for name, tensor in self.tensors.items():
|
| 160 |
-
self.context.set_tensor_address(name, tensor.data_ptr())
|
| 161 |
-
nvtx.range_pop()
|
| 162 |
-
nvtx.range_push("execute")
|
| 163 |
-
noerror = self.context.execute_async_v3(stream)
|
| 164 |
-
if not noerror:
|
| 165 |
-
raise ValueError("ERROR: inference failed.")
|
| 166 |
-
nvtx.range_pop()
|
| 167 |
-
return self.tensors
|
| 168 |
-
|
| 169 |
-
def __del__(self):
|
| 170 |
-
del self.engine
|
| 171 |
-
del self.context
|
| 172 |
-
del self.inputs
|
| 173 |
-
del self.outputs
|
| 174 |
-
del self.tensors
|
| 175 |
-
|
| 176 |
-
class OnnxRuntimePredictor:
|
| 177 |
-
"""
|
| 178 |
-
OnnxRuntime Prediction
|
| 179 |
-
"""
|
| 180 |
-
|
| 181 |
-
def __init__(self, **kwargs):
|
| 182 |
-
model_path = kwargs.get("model_path", "") # 用模型路径区分是否是一样的实例
|
| 183 |
-
assert os.path.exists(model_path), "model path must exist!"
|
| 184 |
-
# print("loading ort model:{}".format(model_path))
|
| 185 |
-
self.debug = kwargs.get("debug", False)
|
| 186 |
-
providers = ['CUDAExecutionProvider', 'CoreMLExecutionProvider', 'CPUExecutionProvider']
|
| 187 |
-
|
| 188 |
-
print(f"OnnxRuntime use {providers}")
|
| 189 |
-
opts = onnxruntime.SessionOptions()
|
| 190 |
-
# opts.inter_op_num_threads = kwargs.get("num_threads", 4)
|
| 191 |
-
# opts.intra_op_num_threads = kwargs.get("num_threads", 4)
|
| 192 |
-
# opts.log_severity_level = 3
|
| 193 |
-
|
| 194 |
-
self.onnx_model = onnxruntime.InferenceSession(model_path, providers=providers, sess_options=opts)
|
| 195 |
-
self.inputs = self.onnx_model.get_inputs()
|
| 196 |
-
self.outputs = self.onnx_model.get_outputs()
|
| 197 |
-
|
| 198 |
-
def input_spec(self):
|
| 199 |
-
"""
|
| 200 |
-
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
|
| 201 |
-
:return: Two items, the shape of the input tensor and its (numpy) datatype.
|
| 202 |
-
"""
|
| 203 |
-
specs = []
|
| 204 |
-
for i, o in enumerate(self.inputs):
|
| 205 |
-
specs.append((o.name, o.shape, o.type))
|
| 206 |
-
if self.debug:
|
| 207 |
-
print(f"ort {i} -> {o.name} -> {o.shape}")
|
| 208 |
-
return specs
|
| 209 |
-
|
| 210 |
-
def output_spec(self):
|
| 211 |
-
"""
|
| 212 |
-
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
|
| 213 |
-
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
|
| 214 |
-
"""
|
| 215 |
-
specs = []
|
| 216 |
-
for i, o in enumerate(self.outputs):
|
| 217 |
-
specs.append((o.name, o.shape, o.type))
|
| 218 |
-
if self.debug:
|
| 219 |
-
print(f"ort output {i} -> {o.name} -> {o.shape}")
|
| 220 |
-
return specs
|
| 221 |
-
|
| 222 |
-
def predict(self, *data):
|
| 223 |
-
input_feeds = {}
|
| 224 |
-
for i in range(len(data)):
|
| 225 |
-
if self.inputs[i].type == 'tensor(float16)':
|
| 226 |
-
input_feeds[self.inputs[i].name] = data[i].astype(np.float16)
|
| 227 |
-
else:
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pdb
|
| 2 |
+
import threading
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import onnxruntime
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from torch.cuda import nvtx
|
| 11 |
+
from collections import OrderedDict
|
| 12 |
+
import platform
|
| 13 |
+
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
import tensorrt as trt
|
| 18 |
+
import ctypes
|
| 19 |
+
except ModuleNotFoundError:
|
| 20 |
+
print("No TensorRT Found")
|
| 21 |
+
|
| 22 |
+
numpy_to_torch_dtype_dict = {
|
| 23 |
+
np.uint8: torch.uint8,
|
| 24 |
+
np.int8: torch.int8,
|
| 25 |
+
np.int16: torch.int16,
|
| 26 |
+
np.int32: torch.int32,
|
| 27 |
+
np.int64: torch.int64,
|
| 28 |
+
np.float16: torch.float16,
|
| 29 |
+
np.float32: torch.float32,
|
| 30 |
+
np.float64: torch.float64,
|
| 31 |
+
np.complex64: torch.complex64,
|
| 32 |
+
np.complex128: torch.complex128,
|
| 33 |
+
}
|
| 34 |
+
if np.version.full_version >= "1.24.0":
|
| 35 |
+
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
|
| 36 |
+
else:
|
| 37 |
+
numpy_to_torch_dtype_dict[np.bool] = torch.bool
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class TensorRTPredictor:
|
| 41 |
+
"""
|
| 42 |
+
Implements inference for the EfficientDet TensorRT engine.
|
| 43 |
+
"""
|
| 44 |
+
@spaces.GPU
|
| 45 |
+
def __init__(self, **kwargs):
|
| 46 |
+
"""
|
| 47 |
+
:param engine_path: The path to the serialized engine to load from disk.
|
| 48 |
+
"""
|
| 49 |
+
if platform.system().lower() == 'linux':
|
| 50 |
+
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/libgrid_sample_3d_plugin.so", mode=ctypes.RTLD_GLOBAL)
|
| 51 |
+
else:
|
| 52 |
+
ctypes.CDLL("./difpoint/checkpoints/liveportrait_onnx/grid_sample_3d_plugin.dll", mode=ctypes.RTLD_GLOBAL)
|
| 53 |
+
# Load TRT engine
|
| 54 |
+
self.logger = trt.Logger(trt.Logger.VERBOSE)
|
| 55 |
+
trt.init_libnvinfer_plugins(self.logger, "")
|
| 56 |
+
engine_path = os.path.abspath(kwargs.get("model_path", None))
|
| 57 |
+
print('engine_path', engine_path)
|
| 58 |
+
self.debug = kwargs.get("debug", False)
|
| 59 |
+
assert engine_path, f"model:{engine_path} must exist!"
|
| 60 |
+
print(f"loading trt model:{engine_path}")
|
| 61 |
+
with open(engine_path, "rb") as f, trt.Runtime(self.logger) as runtime:
|
| 62 |
+
assert runtime
|
| 63 |
+
self.engine = runtime.deserialize_cuda_engine(f.read())
|
| 64 |
+
print('self.engine', self.engine)
|
| 65 |
+
assert self.engine
|
| 66 |
+
self.context = self.engine.create_execution_context()
|
| 67 |
+
assert self.context
|
| 68 |
+
|
| 69 |
+
# Setup I/O bindings
|
| 70 |
+
self.inputs = []
|
| 71 |
+
self.outputs = []
|
| 72 |
+
self.tensors = OrderedDict()
|
| 73 |
+
|
| 74 |
+
# TODO: 支持动态shape输入
|
| 75 |
+
for idx in range(self.engine.num_io_tensors):
|
| 76 |
+
name = self.engine[idx]
|
| 77 |
+
is_input = self.engine.get_tensor_mode(name).name == "INPUT"
|
| 78 |
+
shape = self.engine.get_tensor_shape(name)
|
| 79 |
+
dtype = trt.nptype(self.engine.get_tensor_dtype(name))
|
| 80 |
+
|
| 81 |
+
binding = {
|
| 82 |
+
"index": idx,
|
| 83 |
+
"name": name,
|
| 84 |
+
"dtype": dtype,
|
| 85 |
+
"shape": list(shape)
|
| 86 |
+
}
|
| 87 |
+
if is_input:
|
| 88 |
+
self.inputs.append(binding)
|
| 89 |
+
else:
|
| 90 |
+
self.outputs.append(binding)
|
| 91 |
+
|
| 92 |
+
assert len(self.inputs) > 0
|
| 93 |
+
assert len(self.outputs) > 0
|
| 94 |
+
self.allocate_max_buffers()
|
| 95 |
+
|
| 96 |
+
def allocate_max_buffers(self, device="cuda"):
|
| 97 |
+
nvtx.range_push("allocate_max_buffers")
|
| 98 |
+
# 目前仅支持 batch 维度的动态处理
|
| 99 |
+
batch_size = 1
|
| 100 |
+
for idx in range(self.engine.num_io_tensors):
|
| 101 |
+
binding = self.engine[idx]
|
| 102 |
+
shape = self.engine.get_tensor_shape(binding)
|
| 103 |
+
is_input = self.engine.get_tensor_mode(binding).name == "INPUT"
|
| 104 |
+
if -1 in shape:
|
| 105 |
+
if is_input:
|
| 106 |
+
shape = self.engine.get_tensor_profile_shape(binding, 0)[-1]
|
| 107 |
+
batch_size = shape[0]
|
| 108 |
+
else:
|
| 109 |
+
shape[0] = batch_size
|
| 110 |
+
dtype = trt.nptype(self.engine.get_tensor_dtype(binding))
|
| 111 |
+
tensor = torch.empty(
|
| 112 |
+
tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
|
| 113 |
+
).to(device=device)
|
| 114 |
+
self.tensors[binding] = tensor
|
| 115 |
+
nvtx.range_pop()
|
| 116 |
+
|
| 117 |
+
def input_spec(self):
|
| 118 |
+
"""
|
| 119 |
+
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
|
| 120 |
+
:return: Two items, the shape of the input tensor and its (numpy) datatype.
|
| 121 |
+
"""
|
| 122 |
+
specs = []
|
| 123 |
+
for i, o in enumerate(self.inputs):
|
| 124 |
+
specs.append((o["name"], o['shape'], o['dtype']))
|
| 125 |
+
if self.debug:
|
| 126 |
+
print(f"trt input {i} -> {o['name']} -> {o['shape']}")
|
| 127 |
+
return specs
|
| 128 |
+
|
| 129 |
+
def output_spec(self):
|
| 130 |
+
"""
|
| 131 |
+
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
|
| 132 |
+
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
|
| 133 |
+
"""
|
| 134 |
+
specs = []
|
| 135 |
+
for i, o in enumerate(self.outputs):
|
| 136 |
+
specs.append((o["name"], o['shape'], o['dtype']))
|
| 137 |
+
if self.debug:
|
| 138 |
+
print(f"trt output {i} -> {o['name']} -> {o['shape']}")
|
| 139 |
+
return specs
|
| 140 |
+
|
| 141 |
+
def adjust_buffer(self, feed_dict):
|
| 142 |
+
nvtx.range_push("adjust_buffer")
|
| 143 |
+
for name, buf in feed_dict.items():
|
| 144 |
+
input_tensor = self.tensors[name]
|
| 145 |
+
current_shape = list(buf.shape)
|
| 146 |
+
slices = tuple(slice(0, dim) for dim in current_shape)
|
| 147 |
+
input_tensor[slices].copy_(buf)
|
| 148 |
+
self.context.set_input_shape(name, current_shape)
|
| 149 |
+
nvtx.range_pop()
|
| 150 |
+
|
| 151 |
+
def predict(self, feed_dict, stream):
|
| 152 |
+
"""
|
| 153 |
+
Execute inference on a batch of images.
|
| 154 |
+
:param data: A list of inputs as numpy arrays.
|
| 155 |
+
:return A list of outputs as numpy arrays.
|
| 156 |
+
"""
|
| 157 |
+
nvtx.range_push("set_tensors")
|
| 158 |
+
self.adjust_buffer(feed_dict)
|
| 159 |
+
for name, tensor in self.tensors.items():
|
| 160 |
+
self.context.set_tensor_address(name, tensor.data_ptr())
|
| 161 |
+
nvtx.range_pop()
|
| 162 |
+
nvtx.range_push("execute")
|
| 163 |
+
noerror = self.context.execute_async_v3(stream)
|
| 164 |
+
if not noerror:
|
| 165 |
+
raise ValueError("ERROR: inference failed.")
|
| 166 |
+
nvtx.range_pop()
|
| 167 |
+
return self.tensors
|
| 168 |
+
|
| 169 |
+
def __del__(self):
|
| 170 |
+
del self.engine
|
| 171 |
+
del self.context
|
| 172 |
+
del self.inputs
|
| 173 |
+
del self.outputs
|
| 174 |
+
del self.tensors
|
| 175 |
+
|
| 176 |
+
class OnnxRuntimePredictor:
|
| 177 |
+
"""
|
| 178 |
+
OnnxRuntime Prediction
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, **kwargs):
|
| 182 |
+
model_path = kwargs.get("model_path", "") # 用模型路径区分是否是一样的实例
|
| 183 |
+
assert os.path.exists(model_path), "model path must exist!"
|
| 184 |
+
# print("loading ort model:{}".format(model_path))
|
| 185 |
+
self.debug = kwargs.get("debug", False)
|
| 186 |
+
providers = ['CUDAExecutionProvider', 'CoreMLExecutionProvider', 'CPUExecutionProvider']
|
| 187 |
+
|
| 188 |
+
print(f"OnnxRuntime use {providers}")
|
| 189 |
+
opts = onnxruntime.SessionOptions()
|
| 190 |
+
# opts.inter_op_num_threads = kwargs.get("num_threads", 4)
|
| 191 |
+
# opts.intra_op_num_threads = kwargs.get("num_threads", 4)
|
| 192 |
+
# opts.log_severity_level = 3
|
| 193 |
+
|
| 194 |
+
self.onnx_model = onnxruntime.InferenceSession(model_path, providers=providers, sess_options=opts)
|
| 195 |
+
self.inputs = self.onnx_model.get_inputs()
|
| 196 |
+
self.outputs = self.onnx_model.get_outputs()
|
| 197 |
+
|
| 198 |
+
def input_spec(self):
|
| 199 |
+
"""
|
| 200 |
+
Get the specs for the input tensor of the network. Useful to prepare memory allocations.
|
| 201 |
+
:return: Two items, the shape of the input tensor and its (numpy) datatype.
|
| 202 |
+
"""
|
| 203 |
+
specs = []
|
| 204 |
+
for i, o in enumerate(self.inputs):
|
| 205 |
+
specs.append((o.name, o.shape, o.type))
|
| 206 |
+
if self.debug:
|
| 207 |
+
print(f"ort {i} -> {o.name} -> {o.shape}")
|
| 208 |
+
return specs
|
| 209 |
+
|
| 210 |
+
def output_spec(self):
|
| 211 |
+
"""
|
| 212 |
+
Get the specs for the output tensors of the network. Useful to prepare memory allocations.
|
| 213 |
+
:return: A list with two items per element, the shape and (numpy) datatype of each output tensor.
|
| 214 |
+
"""
|
| 215 |
+
specs = []
|
| 216 |
+
for i, o in enumerate(self.outputs):
|
| 217 |
+
specs.append((o.name, o.shape, o.type))
|
| 218 |
+
if self.debug:
|
| 219 |
+
print(f"ort output {i} -> {o.name} -> {o.shape}")
|
| 220 |
+
return specs
|
| 221 |
+
|
| 222 |
+
def predict(self, *data):
|
| 223 |
+
input_feeds = {}
|
| 224 |
+
for i in range(len(data)):
|
| 225 |
+
if self.inputs[i].type == 'tensor(float16)':
|
| 226 |
+
input_feeds[self.inputs[i].name] = data[i].astype(np.float16)
|
| 227 |
+
else:
|
| 228 |
+
try:
|
| 229 |
+
input_feeds[self.inputs[i].name] = data[i].astype(np.float32)
|
| 230 |
+
except:
|
| 231 |
+
input_feeds[self.inputs[i].name] = data[i].cpu().numpy().astype(np.float32)
|
| 232 |
+
results = self.onnx_model.run(None, input_feeds)
|
| 233 |
+
return results
|
| 234 |
+
|
| 235 |
+
def __del__(self):
|
| 236 |
+
del self.onnx_model
|
| 237 |
+
self.onnx_model = None
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class OnnxRuntimePredictorSingleton(OnnxRuntimePredictor):
|
| 241 |
+
"""
|
| 242 |
+
单例模式,防止模型被加载多次
|
| 243 |
+
"""
|
| 244 |
+
_instance_lock = threading.Lock()
|
| 245 |
+
_instance = {}
|
| 246 |
+
|
| 247 |
+
def __new__(cls, *args, **kwargs):
|
| 248 |
+
model_path = kwargs.get("model_path", "") # 用模型路径区分是否是一样的实例
|
| 249 |
+
assert os.path.exists(model_path), "model path must exist!"
|
| 250 |
+
# 单例模式,避免重复加载模型
|
| 251 |
+
with OnnxRuntimePredictorSingleton._instance_lock:
|
| 252 |
+
if model_path not in OnnxRuntimePredictorSingleton._instance or \
|
| 253 |
+
OnnxRuntimePredictorSingleton._instance[model_path].onnx_model is None:
|
| 254 |
+
OnnxRuntimePredictorSingleton._instance[model_path] = OnnxRuntimePredictor(**kwargs)
|
| 255 |
+
|
| 256 |
+
return OnnxRuntimePredictorSingleton._instance[model_path]
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def get_predictor(**kwargs):
|
| 260 |
+
predict_type = kwargs.get("predict_type", "trt")
|
| 261 |
+
if predict_type == "ort":
|
| 262 |
+
return OnnxRuntimePredictorSingleton(**kwargs)
|
| 263 |
+
elif predict_type == "trt":
|
| 264 |
+
return TensorRTPredictor(**kwargs)
|
| 265 |
+
else:
|
| 266 |
+
raise NotImplementedError
|