CLIP-EBC / models /clip /_clip /__init__.py
Yiming-M's picture
updated
c38041d
raw
history blame
10 kB
import torch
import os
from typing import Tuple, Optional, Any, Union
import json
from .utils import tokenize, transform
from .prepare import prepare
from .text_encoder import CLIPTextEncoder
from .image_encoder import ModifiedResNet, VisionTransformer
from .model import CLIP
curr_dir = os.path.dirname(os.path.abspath(__file__))
clip_model_names = [
"clip_vit_b_16",
"clip_vit_l_14",
]
clip_image_encoder_names = [f"clip_image_encoder_{name[5:]}" for name in clip_model_names]
clip_text_encoder_names = [f"clip_text_encoder_{name[5:]}" for name in clip_model_names]
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
model_weights_path = os.path.join(curr_dir, "weights", f"{name}.pth")
model_config_path = os.path.join(curr_dir, "configs", f"{name}.json")
if not os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")) or not os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")):
prepare()
break
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
assert os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")), f"Missing {name}.pth in weights folder. Please run models/clip/prepare.py to download the weights."
assert os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")), f"Missing {name}.json in configs folder. Please run models/clip/prepare.py to download the configs."
def _clip(name: str, input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
with open(os.path.join(curr_dir, "configs", f"clip_{name}.json"), "r") as f:
config = json.load(f)
model = CLIP(
embed_dim=config["embed_dim"],
# vision
image_resolution=config["image_resolution"],
vision_layers=config["vision_layers"],
vision_width=config["vision_width"],
vision_patch_size=config["vision_patch_size"],
# text
context_length=config["context_length"],
vocab_size=config["vocab_size"],
transformer_width=config["transformer_width"],
transformer_heads=config["transformer_heads"],
transformer_layers=config["transformer_layers"]
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_{name}.pth"), map_location="cpu")
model.load_state_dict(state_dict, strict=True)
if input_size is not None:
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
if name.startswith("vit"):
model.visual.adjust_pos_embed(*input_size)
return model
def _resnet(
name: str,
reduction: int = 32,
features_only: bool = False,
out_indices: Optional[Tuple[int, ...]] = None,
**kwargs: Any
) -> ModifiedResNet:
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = ModifiedResNet(
layers=config["vision_layers"],
output_dim=config["embed_dim"],
input_resolution=config["image_resolution"],
width=config["vision_width"],
heads=config["vision_heads"],
features_only=features_only,
out_indices=out_indices,
reduction=reduction
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
return model
def _vit(name: str, features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = VisionTransformer(
input_resolution=config["image_resolution"],
patch_size=config["vision_patch_size"],
output_dim=config["embed_dim"],
width=config["vision_width"],
layers=config["vision_layers"],
heads=config["vision_heads"],
features_only=features_only
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
if input_size is not None:
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
model.adjust_pos_embed(*input_size)
return model
def _text_encoder(name: str) -> CLIPTextEncoder:
with open(os.path.join(curr_dir, "configs", f"clip_text_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = CLIPTextEncoder(
embed_dim=config["embed_dim"],
context_length=config["context_length"],
vocab_size=config["vocab_size"],
transformer_width=config["transformer_width"],
transformer_heads=config["transformer_heads"],
transformer_layers=config["transformer_layers"]
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_text_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
return model
# CLIP models
def resnet50_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50", input_size)
def resnet101_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet101", input_size)
def resnet50x4_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x4", input_size)
def resnet50x16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x16", input_size)
def resnet50x64_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x64", input_size)
def vit_b_32_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_b_32", input_size)
def vit_b_16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_b_16", input_size)
def vit_l_14_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_l_14", input_size)
def vit_l_14_336px_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_l_14_336px", input_size)
# CLIP image encoders
def resnet50_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet101_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet101", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x4_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x4", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x16_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x16", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x64_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x64", features_only=features_only, out_indices=out_indices, **kwargs)
def vit_b_32_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_b_32", features_only=features_only, input_size=input_size, **kwargs)
def vit_b_16_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_b_16", features_only=features_only, input_size=input_size, **kwargs)
def vit_l_14_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_l_14", features_only=features_only, input_size=input_size, **kwargs)
def vit_l_14_336px_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_l_14_336px", features_only=features_only, input_size=input_size, **kwargs)
# CLIP text encoders
def resnet50_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50")
def resnet101_txt() -> CLIPTextEncoder:
return _text_encoder("resnet101")
def resnet50x4_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x4")
def resnet50x16_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x16")
def resnet50x64_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x64")
def vit_b_32_txt() -> CLIPTextEncoder:
return _text_encoder("vit_b_32")
def vit_b_16_txt() -> CLIPTextEncoder:
return _text_encoder("vit_b_16")
def vit_l_14_txt() -> CLIPTextEncoder:
return _text_encoder("vit_l_14")
def vit_l_14_336px_txt() -> CLIPTextEncoder:
return _text_encoder("vit_l_14_336px")
__all__ = [
# utils
"tokenize",
"transform",
# clip image encoders
"vit_b_16_img",
"vit_l_14_img",
# clip text encoders
"vit_b_16_txt",
"vit_l_14_txt",
]