Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,024 Bytes
570db9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import torch
import os
from typing import Tuple, Optional, Any, Union
import json
from .utils import tokenize, transform
from .prepare import prepare
from .text_encoder import CLIPTextEncoder
from .image_encoder import ModifiedResNet, VisionTransformer
from .model import CLIP
curr_dir = os.path.dirname(os.path.abspath(__file__))
clip_model_names = [
"clip_vit_b_16",
"clip_vit_l_14",
]
clip_image_encoder_names = [f"clip_image_encoder_{name[5:]}" for name in clip_model_names]
clip_text_encoder_names = [f"clip_text_encoder_{name[5:]}" for name in clip_model_names]
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
model_weights_path = os.path.join(curr_dir, "weights", f"{name}.pth")
model_config_path = os.path.join(curr_dir, "configs", f"{name}.json")
if not os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")) or not os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")):
prepare()
break
for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
assert os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")), f"Missing {name}.pth in weights folder. Please run models/clip/prepare.py to download the weights."
assert os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")), f"Missing {name}.json in configs folder. Please run models/clip/prepare.py to download the configs."
def _clip(name: str, input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
with open(os.path.join(curr_dir, "configs", f"clip_{name}.json"), "r") as f:
config = json.load(f)
model = CLIP(
embed_dim=config["embed_dim"],
# vision
image_resolution=config["image_resolution"],
vision_layers=config["vision_layers"],
vision_width=config["vision_width"],
vision_patch_size=config["vision_patch_size"],
# text
context_length=config["context_length"],
vocab_size=config["vocab_size"],
transformer_width=config["transformer_width"],
transformer_heads=config["transformer_heads"],
transformer_layers=config["transformer_layers"]
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_{name}.pth"), map_location="cpu")
model.load_state_dict(state_dict, strict=True)
if input_size is not None:
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
if name.startswith("vit"):
model.visual.adjust_pos_embed(*input_size)
return model
def _resnet(
name: str,
reduction: int = 32,
features_only: bool = False,
out_indices: Optional[Tuple[int, ...]] = None,
**kwargs: Any
) -> ModifiedResNet:
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = ModifiedResNet(
layers=config["vision_layers"],
output_dim=config["embed_dim"],
input_resolution=config["image_resolution"],
width=config["vision_width"],
heads=config["vision_heads"],
features_only=features_only,
out_indices=out_indices,
reduction=reduction
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
return model
def _vit(name: str, features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = VisionTransformer(
input_resolution=config["image_resolution"],
patch_size=config["vision_patch_size"],
output_dim=config["embed_dim"],
width=config["vision_width"],
layers=config["vision_layers"],
heads=config["vision_heads"],
features_only=features_only
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
if input_size is not None:
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
model.adjust_pos_embed(*input_size)
return model
def _text_encoder(name: str) -> CLIPTextEncoder:
with open(os.path.join(curr_dir, "configs", f"clip_text_encoder_{name}.json"), "r") as f:
config = json.load(f)
model = CLIPTextEncoder(
embed_dim=config["embed_dim"],
context_length=config["context_length"],
vocab_size=config["vocab_size"],
transformer_width=config["transformer_width"],
transformer_heads=config["transformer_heads"],
transformer_layers=config["transformer_layers"]
)
state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_text_encoder_{name}.pth"), map_location="cpu")
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if len(missing_keys) > 0 or len(unexpected_keys) > 0:
print(f"Missing keys: {missing_keys}")
print(f"Unexpected keys: {unexpected_keys}")
else:
print(f"All keys matched successfully.")
return model
# CLIP models
def resnet50_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50", input_size)
def resnet101_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet101", input_size)
def resnet50x4_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x4", input_size)
def resnet50x16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x16", input_size)
def resnet50x64_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("resnet50x64", input_size)
def vit_b_32_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_b_32", input_size)
def vit_b_16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_b_16", input_size)
def vit_l_14_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_l_14", input_size)
def vit_l_14_336px_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
return _clip("vit_l_14_336px", input_size)
# CLIP image encoders
def resnet50_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet101_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet101", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x4_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x4", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x16_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x16", features_only=features_only, out_indices=out_indices, **kwargs)
def resnet50x64_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
return _resnet("resnet50x64", features_only=features_only, out_indices=out_indices, **kwargs)
def vit_b_32_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_b_32", features_only=features_only, input_size=input_size, **kwargs)
def vit_b_16_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_b_16", features_only=features_only, input_size=input_size, **kwargs)
def vit_l_14_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_l_14", features_only=features_only, input_size=input_size, **kwargs)
def vit_l_14_336px_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
return _vit("vit_l_14_336px", features_only=features_only, input_size=input_size, **kwargs)
# CLIP text encoders
def resnet50_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50")
def resnet101_txt() -> CLIPTextEncoder:
return _text_encoder("resnet101")
def resnet50x4_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x4")
def resnet50x16_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x16")
def resnet50x64_txt() -> CLIPTextEncoder:
return _text_encoder("resnet50x64")
def vit_b_32_txt() -> CLIPTextEncoder:
return _text_encoder("vit_b_32")
def vit_b_16_txt() -> CLIPTextEncoder:
return _text_encoder("vit_b_16")
def vit_l_14_txt() -> CLIPTextEncoder:
return _text_encoder("vit_l_14")
def vit_l_14_336px_txt() -> CLIPTextEncoder:
return _text_encoder("vit_l_14_336px")
__all__ = [
# utils
"tokenize",
"transform",
# clip image encoders
"vit_b_16_img",
"vit_l_14_img",
# clip text encoders
"vit_b_16_txt",
"vit_l_14_txt",
]
|