File size: 10,024 Bytes
570db9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import os
from typing import Tuple, Optional, Any, Union
import json

from .utils import tokenize, transform
from .prepare import prepare
from .text_encoder import CLIPTextEncoder
from .image_encoder import ModifiedResNet, VisionTransformer
from .model import CLIP


curr_dir = os.path.dirname(os.path.abspath(__file__))

clip_model_names = [
    "clip_vit_b_16",
    "clip_vit_l_14",
]

clip_image_encoder_names = [f"clip_image_encoder_{name[5:]}" for name in clip_model_names]
clip_text_encoder_names = [f"clip_text_encoder_{name[5:]}" for name in clip_model_names]


for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
    model_weights_path = os.path.join(curr_dir, "weights", f"{name}.pth")
    model_config_path = os.path.join(curr_dir, "configs", f"{name}.json")
    if not os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")) or not os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")):
        prepare()
        break


for name in clip_model_names + clip_image_encoder_names + clip_text_encoder_names:
    assert os.path.exists(os.path.join(curr_dir, "weights", f"{name}.pth")), f"Missing {name}.pth in weights folder. Please run models/clip/prepare.py to download the weights."
    assert os.path.exists(os.path.join(curr_dir, "configs", f"{name}.json")), f"Missing {name}.json in configs folder. Please run models/clip/prepare.py to download the configs."


def _clip(name: str, input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    with open(os.path.join(curr_dir, "configs", f"clip_{name}.json"), "r") as f:
        config = json.load(f)

    model = CLIP(
        embed_dim=config["embed_dim"],
        # vision
        image_resolution=config["image_resolution"],
        vision_layers=config["vision_layers"],
        vision_width=config["vision_width"],
        vision_patch_size=config["vision_patch_size"],
        # text
        context_length=config["context_length"],
        vocab_size=config["vocab_size"],
        transformer_width=config["transformer_width"],
        transformer_heads=config["transformer_heads"],
        transformer_layers=config["transformer_layers"]
    )
    state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_{name}.pth"), map_location="cpu")
    model.load_state_dict(state_dict, strict=True)

    if input_size is not None:
        input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
        if name.startswith("vit"):
            model.visual.adjust_pos_embed(*input_size)

    return model


def _resnet(
    name: str,
    reduction: int = 32,
    features_only: bool = False,
    out_indices: Optional[Tuple[int, ...]] = None,
    **kwargs: Any
) -> ModifiedResNet:
    with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
        config = json.load(f)
    model = ModifiedResNet(
        layers=config["vision_layers"],
        output_dim=config["embed_dim"],
        input_resolution=config["image_resolution"],
        width=config["vision_width"],
        heads=config["vision_heads"],
        features_only=features_only,
        out_indices=out_indices,
        reduction=reduction
    )
    state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
    missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
    if len(missing_keys) > 0 or len(unexpected_keys) > 0:
        print(f"Missing keys: {missing_keys}")
        print(f"Unexpected keys: {unexpected_keys}")
    else:
        print(f"All keys matched successfully.")

    return model


def _vit(name: str, features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
    with open(os.path.join(curr_dir, "configs", f"clip_image_encoder_{name}.json"), "r") as f:
        config = json.load(f)
    model = VisionTransformer(
        input_resolution=config["image_resolution"],
        patch_size=config["vision_patch_size"],
        output_dim=config["embed_dim"],
        width=config["vision_width"],
        layers=config["vision_layers"],
        heads=config["vision_heads"],
        features_only=features_only
    )
    state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_image_encoder_{name}.pth"), map_location="cpu")
    missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
    if len(missing_keys) > 0 or len(unexpected_keys) > 0:
        print(f"Missing keys: {missing_keys}")
        print(f"Unexpected keys: {unexpected_keys}")
    else:
        print(f"All keys matched successfully.")

    if input_size is not None:
        input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
        model.adjust_pos_embed(*input_size)
    return model


def _text_encoder(name: str) -> CLIPTextEncoder:
    with open(os.path.join(curr_dir, "configs", f"clip_text_encoder_{name}.json"), "r") as f:
        config = json.load(f)
    model = CLIPTextEncoder(
        embed_dim=config["embed_dim"],
        context_length=config["context_length"],
        vocab_size=config["vocab_size"],
        transformer_width=config["transformer_width"],
        transformer_heads=config["transformer_heads"],
        transformer_layers=config["transformer_layers"]
    )
    state_dict = torch.load(os.path.join(curr_dir, "weights", f"clip_text_encoder_{name}.pth"), map_location="cpu")
    missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
    if len(missing_keys) > 0 or len(unexpected_keys) > 0:
        print(f"Missing keys: {missing_keys}")
        print(f"Unexpected keys: {unexpected_keys}")
    else:
        print(f"All keys matched successfully.")

    return model



# CLIP models
def resnet50_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("resnet50", input_size)

def resnet101_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("resnet101", input_size)

def resnet50x4_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("resnet50x4", input_size)

def resnet50x16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("resnet50x16", input_size)

def resnet50x64_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("resnet50x64", input_size)

def vit_b_32_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("vit_b_32", input_size)

def vit_b_16_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("vit_b_16", input_size)

def vit_l_14_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("vit_l_14", input_size)

def vit_l_14_336px_clip(input_size: Optional[Union[int, Tuple[int, int]]] = None) -> CLIP:
    return _clip("vit_l_14_336px", input_size)


# CLIP image encoders
def resnet50_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
    return _resnet("resnet50", features_only=features_only, out_indices=out_indices, **kwargs)

def resnet101_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
    return _resnet("resnet101", features_only=features_only, out_indices=out_indices, **kwargs)

def resnet50x4_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
    return _resnet("resnet50x4", features_only=features_only, out_indices=out_indices, **kwargs)

def resnet50x16_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
    return _resnet("resnet50x16", features_only=features_only, out_indices=out_indices, **kwargs)

def resnet50x64_img(features_only: bool = False, out_indices: Optional[Tuple[int, ...]] = None, **kwargs: Any) -> ModifiedResNet:
    return _resnet("resnet50x64", features_only=features_only, out_indices=out_indices, **kwargs)

def vit_b_32_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
    return _vit("vit_b_32", features_only=features_only, input_size=input_size, **kwargs)

def vit_b_16_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
    return _vit("vit_b_16", features_only=features_only, input_size=input_size, **kwargs)

def vit_l_14_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
    return _vit("vit_l_14", features_only=features_only, input_size=input_size, **kwargs)

def vit_l_14_336px_img(features_only: bool = False, input_size: Optional[Union[int, Tuple[int, int]]] = None, **kwargs: Any) -> VisionTransformer:
    return _vit("vit_l_14_336px", features_only=features_only, input_size=input_size, **kwargs)


# CLIP text encoders
def resnet50_txt() -> CLIPTextEncoder:
    return _text_encoder("resnet50")

def resnet101_txt() -> CLIPTextEncoder:
    return _text_encoder("resnet101")

def resnet50x4_txt() -> CLIPTextEncoder:
    return _text_encoder("resnet50x4")

def resnet50x16_txt() -> CLIPTextEncoder:
    return _text_encoder("resnet50x16")

def resnet50x64_txt() -> CLIPTextEncoder:
    return _text_encoder("resnet50x64")

def vit_b_32_txt() -> CLIPTextEncoder:
    return _text_encoder("vit_b_32")

def vit_b_16_txt() -> CLIPTextEncoder:
    return _text_encoder("vit_b_16")

def vit_l_14_txt() -> CLIPTextEncoder:
    return _text_encoder("vit_l_14")

def vit_l_14_336px_txt() -> CLIPTextEncoder:
    return _text_encoder("vit_l_14_336px")


__all__ = [
    # utils
    "tokenize",
    "transform",
    # clip image encoders
    "vit_b_16_img",
    "vit_l_14_img",
    # clip text encoders
    "vit_b_16_txt",
    "vit_l_14_txt",
]