Yanrui95's picture
Upload folder using huggingface_hub
fc13e66 verified
from diffusers import UNetSpatioTemporalConditionModel
from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput
from diffusers.utils import is_torch_version
import torch
from typing import Any, Dict, Optional, Tuple, Union
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
CKPT_KWARGS = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
class DiffusersUNetSpatioTemporalConditionModelNormalCrafter(UNetSpatioTemporalConditionModel):
@staticmethod
def forward_crossattn_down_block_dino(
module,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
dino_down_block_res_samples = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
self = module
blocks = list(zip(self.resnets, self.attentions))
for resnet, attn in blocks:
if self.training and self.gradient_checkpointing: # TODO
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**CKPT_KWARGS,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn),
hidden_states,
encoder_hidden_states,
image_only_indicator,
False,
**CKPT_KWARGS,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
@staticmethod
def forward_down_block_dino(
module,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
dino_down_block_res_samples = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
self = module
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
return_dict: bool = True,
image_controlnet_down_block_res_samples = None,
image_controlnet_mid_block_res_sample = None,
dino_down_block_res_samples = None,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
if not hasattr(self, "custom_gradient_checkpointing"):
self.custom_gradient_checkpointing = False
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size, num_frames = sample.shape[:2]
if len(timesteps.shape) == 1:
timesteps = timesteps.expand(batch_size)
else:
timesteps = timesteps.reshape(batch_size * num_frames)
t_emb = self.time_proj(timesteps) # (B, C)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb) # (B, C)
time_embeds = self.add_time_proj(added_time_ids.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb.dtype)
aug_emb = self.add_embedding(time_embeds)
if emb.shape[0] == 1:
emb = emb + aug_emb
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
else:
aug_emb = aug_emb.repeat_interleave(num_frames, dim=0)
emb = emb + aug_emb
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
# here, our encoder_hidden_states is [batch * frames, 1, channels]
if not sample.shape[0] == encoder_hidden_states.shape[0]:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
if dino_down_block_res_samples is not None:
dino_down_block_res_samples = [x for x in dino_down_block_res_samples]
sample += dino_down_block_res_samples.pop(0)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if dino_down_block_res_samples is None:
if self.custom_gradient_checkpointing:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = torch.utils.checkpoint.checkpoint(
create_custom_forward(downsample_block),
sample,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS,
)
else:
sample, res_samples = torch.utils.checkpoint.checkpoint(
create_custom_forward(downsample_block),
sample,
emb,
image_only_indicator,
**CKPT_KWARGS,
)
else:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
else:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = self.forward_crossattn_down_block_dino(
downsample_block,
sample,
emb,
encoder_hidden_states,
image_only_indicator,
dino_down_block_res_samples,
)
else:
sample, res_samples = self.forward_down_block_dino(
downsample_block,
sample,
emb,
image_only_indicator,
dino_down_block_res_samples,
)
down_block_res_samples += res_samples
if image_controlnet_down_block_res_samples is not None:
new_down_block_res_samples = ()
for down_block_res_sample, image_controlnet_down_block_res_sample in zip(
down_block_res_samples, image_controlnet_down_block_res_samples
):
down_block_res_sample = (down_block_res_sample + image_controlnet_down_block_res_sample) / 2
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS,
)
else:
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
if image_controlnet_mid_block_res_sample is not None:
sample = (sample + image_controlnet_mid_block_res_sample) / 2
# 5. up
mid_up_block_out_samples = [sample, ]
down_block_out_sampels = []
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
down_block_out_sampels.append(res_samples[-1])
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(upsample_block),
sample,
res_samples,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(upsample_block),
sample,
res_samples,
emb,
image_only_indicator,
**CKPT_KWARGS
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
mid_up_block_out_samples.append(sample)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.conv_out),
sample,
**CKPT_KWARGS
)
else:
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if not return_dict:
return (sample, down_block_out_sampels[::-1], mid_up_block_out_samples)
return UNetSpatioTemporalConditionOutput(sample=sample)