Spaces:
Running
on
Zero
Running
on
Zero
from diffusers import UNetSpatioTemporalConditionModel | |
from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput | |
from diffusers.utils import is_torch_version | |
import torch | |
from typing import Any, Dict, Optional, Tuple, Union | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
CKPT_KWARGS = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
class DiffusersUNetSpatioTemporalConditionModelNormalCrafter(UNetSpatioTemporalConditionModel): | |
def forward_crossattn_down_block_dino( | |
module, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
dino_down_block_res_samples = None, | |
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: | |
output_states = () | |
self = module | |
blocks = list(zip(self.resnets, self.attentions)) | |
for resnet, attn in blocks: | |
if self.training and self.gradient_checkpointing: # TODO | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
**CKPT_KWARGS, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn), | |
hidden_states, | |
encoder_hidden_states, | |
image_only_indicator, | |
False, | |
**CKPT_KWARGS, | |
)[0] | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
return_dict=False, | |
)[0] | |
if dino_down_block_res_samples is not None: | |
hidden_states += dino_down_block_res_samples.pop(0) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
if dino_down_block_res_samples is not None: | |
hidden_states += dino_down_block_res_samples.pop(0) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def forward_down_block_dino( | |
module, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
image_only_indicator: Optional[torch.Tensor] = None, | |
dino_down_block_res_samples = None, | |
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]: | |
self = module | |
output_states = () | |
for resnet in self.resnets: | |
if self.training and self.gradient_checkpointing: | |
if is_torch_version(">=", "1.11.0"): | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
image_only_indicator, | |
) | |
else: | |
hidden_states = resnet( | |
hidden_states, | |
temb, | |
image_only_indicator=image_only_indicator, | |
) | |
if dino_down_block_res_samples is not None: | |
hidden_states += dino_down_block_res_samples.pop(0) | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
if dino_down_block_res_samples is not None: | |
hidden_states += dino_down_block_res_samples.pop(0) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
added_time_ids: torch.Tensor, | |
return_dict: bool = True, | |
image_controlnet_down_block_res_samples = None, | |
image_controlnet_mid_block_res_sample = None, | |
dino_down_block_res_samples = None, | |
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: | |
r""" | |
The [`UNetSpatioTemporalConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. | |
added_time_ids: (`torch.FloatTensor`): | |
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal | |
embeddings and added to the time embeddings. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
if not hasattr(self, "custom_gradient_checkpointing"): | |
self.custom_gradient_checkpointing = False | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
batch_size, num_frames = sample.shape[:2] | |
if len(timesteps.shape) == 1: | |
timesteps = timesteps.expand(batch_size) | |
else: | |
timesteps = timesteps.reshape(batch_size * num_frames) | |
t_emb = self.time_proj(timesteps) # (B, C) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb) # (B, C) | |
time_embeds = self.add_time_proj(added_time_ids.flatten()) | |
time_embeds = time_embeds.reshape((batch_size, -1)) | |
time_embeds = time_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(time_embeds) | |
if emb.shape[0] == 1: | |
emb = emb + aug_emb | |
# Repeat the embeddings num_video_frames times | |
# emb: [batch, channels] -> [batch * frames, channels] | |
emb = emb.repeat_interleave(num_frames, dim=0) | |
else: | |
aug_emb = aug_emb.repeat_interleave(num_frames, dim=0) | |
emb = emb + aug_emb | |
# Flatten the batch and frames dimensions | |
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] | |
sample = sample.flatten(0, 1) | |
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] | |
# here, our encoder_hidden_states is [batch * frames, 1, channels] | |
if not sample.shape[0] == encoder_hidden_states.shape[0]: | |
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) | |
if dino_down_block_res_samples is not None: | |
dino_down_block_res_samples = [x for x in dino_down_block_res_samples] | |
sample += dino_down_block_res_samples.pop(0) | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if dino_down_block_res_samples is None: | |
if self.custom_gradient_checkpointing: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(downsample_block), | |
sample, | |
emb, | |
encoder_hidden_states, | |
image_only_indicator, | |
**CKPT_KWARGS, | |
) | |
else: | |
sample, res_samples = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(downsample_block), | |
sample, | |
emb, | |
image_only_indicator, | |
**CKPT_KWARGS, | |
) | |
else: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = self.forward_crossattn_down_block_dino( | |
downsample_block, | |
sample, | |
emb, | |
encoder_hidden_states, | |
image_only_indicator, | |
dino_down_block_res_samples, | |
) | |
else: | |
sample, res_samples = self.forward_down_block_dino( | |
downsample_block, | |
sample, | |
emb, | |
image_only_indicator, | |
dino_down_block_res_samples, | |
) | |
down_block_res_samples += res_samples | |
if image_controlnet_down_block_res_samples is not None: | |
new_down_block_res_samples = () | |
for down_block_res_sample, image_controlnet_down_block_res_sample in zip( | |
down_block_res_samples, image_controlnet_down_block_res_samples | |
): | |
down_block_res_sample = (down_block_res_sample + image_controlnet_down_block_res_sample) / 2 | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.custom_gradient_checkpointing: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
sample, | |
emb, | |
encoder_hidden_states, | |
image_only_indicator, | |
**CKPT_KWARGS, | |
) | |
else: | |
sample = self.mid_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
if image_controlnet_mid_block_res_sample is not None: | |
sample = (sample + image_controlnet_mid_block_res_sample) / 2 | |
# 5. up | |
mid_up_block_out_samples = [sample, ] | |
down_block_out_sampels = [] | |
for i, upsample_block in enumerate(self.up_blocks): | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
down_block_out_sampels.append(res_samples[-1]) | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
if self.custom_gradient_checkpointing: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(upsample_block), | |
sample, | |
res_samples, | |
emb, | |
encoder_hidden_states, | |
image_only_indicator, | |
**CKPT_KWARGS | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
image_only_indicator=image_only_indicator, | |
) | |
else: | |
if self.custom_gradient_checkpointing: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(upsample_block), | |
sample, | |
res_samples, | |
emb, | |
image_only_indicator, | |
**CKPT_KWARGS | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
image_only_indicator=image_only_indicator, | |
) | |
mid_up_block_out_samples.append(sample) | |
# 6. post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
if self.custom_gradient_checkpointing: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.conv_out), | |
sample, | |
**CKPT_KWARGS | |
) | |
else: | |
sample = self.conv_out(sample) | |
# 7. Reshape back to original shape | |
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) | |
if not return_dict: | |
return (sample, down_block_out_sampels[::-1], mid_up_block_out_samples) | |
return UNetSpatioTemporalConditionOutput(sample=sample) |