Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,284 Bytes
fc13e66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
from diffusers import UNetSpatioTemporalConditionModel
from diffusers.models.unets.unet_spatio_temporal_condition import UNetSpatioTemporalConditionOutput
from diffusers.utils import is_torch_version
import torch
from typing import Any, Dict, Optional, Tuple, Union
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
CKPT_KWARGS = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
class DiffusersUNetSpatioTemporalConditionModelNormalCrafter(UNetSpatioTemporalConditionModel):
@staticmethod
def forward_crossattn_down_block_dino(
module,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
dino_down_block_res_samples = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
output_states = ()
self = module
blocks = list(zip(self.resnets, self.attentions))
for resnet, attn in blocks:
if self.training and self.gradient_checkpointing: # TODO
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
**CKPT_KWARGS,
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(attn),
hidden_states,
encoder_hidden_states,
image_only_indicator,
False,
**CKPT_KWARGS,
)[0]
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
hidden_states = attn(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
return_dict=False,
)[0]
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
@staticmethod
def forward_down_block_dino(
module,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
image_only_indicator: Optional[torch.Tensor] = None,
dino_down_block_res_samples = None,
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
self = module
output_states = ()
for resnet in self.resnets:
if self.training and self.gradient_checkpointing:
if is_torch_version(">=", "1.11.0"):
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
use_reentrant=False,
)
else:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet),
hidden_states,
temb,
image_only_indicator,
)
else:
hidden_states = resnet(
hidden_states,
temb,
image_only_indicator=image_only_indicator,
)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
if dino_down_block_res_samples is not None:
hidden_states += dino_down_block_res_samples.pop(0)
output_states = output_states + (hidden_states,)
return hidden_states, output_states
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
added_time_ids: torch.Tensor,
return_dict: bool = True,
image_controlnet_down_block_res_samples = None,
image_controlnet_mid_block_res_sample = None,
dino_down_block_res_samples = None,
) -> Union[UNetSpatioTemporalConditionOutput, Tuple]:
r"""
The [`UNetSpatioTemporalConditionModel`] forward method.
Args:
sample (`torch.FloatTensor`):
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`.
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
encoder_hidden_states (`torch.FloatTensor`):
The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`.
added_time_ids: (`torch.FloatTensor`):
The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal
embeddings and added to the time embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain
tuple.
Returns:
[`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`:
If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise
a `tuple` is returned where the first element is the sample tensor.
"""
if not hasattr(self, "custom_gradient_checkpointing"):
self.custom_gradient_checkpointing = False
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
batch_size, num_frames = sample.shape[:2]
if len(timesteps.shape) == 1:
timesteps = timesteps.expand(batch_size)
else:
timesteps = timesteps.reshape(batch_size * num_frames)
t_emb = self.time_proj(timesteps) # (B, C)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb) # (B, C)
time_embeds = self.add_time_proj(added_time_ids.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb.dtype)
aug_emb = self.add_embedding(time_embeds)
if emb.shape[0] == 1:
emb = emb + aug_emb
# Repeat the embeddings num_video_frames times
# emb: [batch, channels] -> [batch * frames, channels]
emb = emb.repeat_interleave(num_frames, dim=0)
else:
aug_emb = aug_emb.repeat_interleave(num_frames, dim=0)
emb = emb + aug_emb
# Flatten the batch and frames dimensions
# sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width]
sample = sample.flatten(0, 1)
# encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels]
# here, our encoder_hidden_states is [batch * frames, 1, channels]
if not sample.shape[0] == encoder_hidden_states.shape[0]:
encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0)
# 2. pre-process
sample = self.conv_in(sample)
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device)
if dino_down_block_res_samples is not None:
dino_down_block_res_samples = [x for x in dino_down_block_res_samples]
sample += dino_down_block_res_samples.pop(0)
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if dino_down_block_res_samples is None:
if self.custom_gradient_checkpointing:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = torch.utils.checkpoint.checkpoint(
create_custom_forward(downsample_block),
sample,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS,
)
else:
sample, res_samples = torch.utils.checkpoint.checkpoint(
create_custom_forward(downsample_block),
sample,
emb,
image_only_indicator,
**CKPT_KWARGS,
)
else:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
image_only_indicator=image_only_indicator,
)
else:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = self.forward_crossattn_down_block_dino(
downsample_block,
sample,
emb,
encoder_hidden_states,
image_only_indicator,
dino_down_block_res_samples,
)
else:
sample, res_samples = self.forward_down_block_dino(
downsample_block,
sample,
emb,
image_only_indicator,
dino_down_block_res_samples,
)
down_block_res_samples += res_samples
if image_controlnet_down_block_res_samples is not None:
new_down_block_res_samples = ()
for down_block_res_sample, image_controlnet_down_block_res_sample in zip(
down_block_res_samples, image_controlnet_down_block_res_samples
):
down_block_res_sample = (down_block_res_sample + image_controlnet_down_block_res_sample) / 2
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# 4. mid
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS,
)
else:
sample = self.mid_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
if image_controlnet_mid_block_res_sample is not None:
sample = (sample + image_controlnet_mid_block_res_sample) / 2
# 5. up
mid_up_block_out_samples = [sample, ]
down_block_out_sampels = []
for i, upsample_block in enumerate(self.up_blocks):
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
down_block_out_sampels.append(res_samples[-1])
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(upsample_block),
sample,
res_samples,
emb,
encoder_hidden_states,
image_only_indicator,
**CKPT_KWARGS
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
image_only_indicator=image_only_indicator,
)
else:
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(upsample_block),
sample,
res_samples,
emb,
image_only_indicator,
**CKPT_KWARGS
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
image_only_indicator=image_only_indicator,
)
mid_up_block_out_samples.append(sample)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
if self.custom_gradient_checkpointing:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.conv_out),
sample,
**CKPT_KWARGS
)
else:
sample = self.conv_out(sample)
# 7. Reshape back to original shape
sample = sample.reshape(batch_size, num_frames, *sample.shape[1:])
if not return_dict:
return (sample, down_block_out_sampels[::-1], mid_up_block_out_samples)
return UNetSpatioTemporalConditionOutput(sample=sample) |