Spaces:
Running
Running
from ultralytics import YOLO | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import cv2 | |
import torch | |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model | |
def fast_process(annotations, image): | |
fig = plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
#original_h = image.shape[0] | |
#original_w = image.shape[1] | |
#for i, mask in enumerate(annotations): | |
# mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)) | |
# annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)) | |
fast_show_mask(annotations, | |
plt.gca()) | |
#target_height=original_h, | |
#target_width=original_w) | |
plt.axis('off') | |
plt.tight_layout() | |
return fig | |
# CPU post process | |
def fast_show_mask(annotation, ax): | |
msak_sum = annotation.shape[0] | |
height = annotation.shape[1] | |
weight = annotation.shape[2] | |
# 将annotation 按照面积 排序 | |
areas = np.sum(annotation, axis=(1, 2)) | |
sorted_indices = np.argsort(areas)[::1] | |
annotation = annotation[sorted_indices] | |
index = (annotation != 0).argmax(axis=0) | |
color = np.random.random((msak_sum, 1, 1, 3)) | |
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6 | |
visual = np.concatenate([color, transparency], axis=-1) | |
mask_image = np.expand_dims(annotation, -1) * visual | |
show = np.zeros((height, weight, 4)) | |
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij') | |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None)) | |
# 使用向量化索引更新show的值 | |
show[h_indices, w_indices, :] = mask_image[indices] | |
#if retinamask == False: | |
# show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST) | |
ax.imshow(show) | |
# post_process(results[0].masks, Image.open("../data/cake.png")) | |
def predict(input, input_size=512): | |
input_size = int(input_size) # 确保 imgsz 是整数 | |
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
pil_image = fast_process(annotations=results[0].masks.data.numpy(), image=input) | |
return pil_image | |
# inp = 'assets/sa_192.jpg' | |
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
# results = format_results(results[0], 100) | |
# post_process(annotations=results, image_path=inp) | |
demo = gr.Interface(fn=predict, | |
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=512)], | |
outputs=['plot'], | |
examples=[["assets/sa_8776.jpg", 1024]], | |
# ["assets/sa_1309.jpg", 1024]], | |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
) | |
demo.launch() | |
""" | |
from ultralytics import YOLO | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import torch | |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model | |
def format_results(result,filter = 0): | |
annotations = [] | |
n = len(result.masks.data) | |
for i in range(n): | |
annotation = {} | |
mask = result.masks.data[i] == 1.0 | |
if torch.sum(mask) < filter: | |
continue | |
annotation['id'] = i | |
annotation['segmentation'] = mask.cpu().numpy() | |
annotation['bbox'] = result.boxes.data[i] | |
annotation['score'] = result.boxes.conf[i] | |
annotation['area'] = annotation['segmentation'].sum() | |
annotations.append(annotation) | |
return annotations | |
def show_mask(annotation, ax, random_color=True, bbox=None, points=None): | |
if random_color : # random mask color | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | |
if type(annotation) == dict: | |
annotation = annotation['segmentation'] | |
mask = annotation | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
# draw box | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') | |
ax.imshow(mask_image) | |
return mask_image | |
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None): | |
fig = plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for i, mask in enumerate(annotations): | |
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) | |
plt.axis('off') | |
plt.tight_layout() | |
return fig | |
# post_process(results[0].masks, Image.open("../data/cake.png")) | |
def predict(input, input_size): | |
input_size = int(input_size) # 确保 imgsz 是整数 | |
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
results = format_results(results[0], 100) | |
results.sort(key=lambda x: x['area'], reverse=True) | |
pil_image = post_process(annotations=results, image=input) | |
return pil_image | |
# inp = 'assets/sa_192.jpg' | |
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
# results = format_results(results[0], 100) | |
# post_process(annotations=results, image_path=inp) | |
demo = gr.Interface(fn=predict, | |
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)], | |
outputs=['plot'], | |
examples=[["assets/sa_8776.jpg", 1024]], | |
# ["assets/sa_1309.jpg", 1024]], | |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
) | |
demo.launch() | |
""" |