Spaces:
Running
Running
File size: 6,552 Bytes
c987532 77f39b8 c987532 37773b6 c987532 77f39b8 c987532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import cv2
import torch
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
def fast_process(annotations, image):
fig = plt.figure(figsize=(10, 10))
plt.imshow(image)
#original_h = image.shape[0]
#original_w = image.shape[1]
#for i, mask in enumerate(annotations):
# mask = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8))
# annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
fast_show_mask(annotations,
plt.gca())
#target_height=original_h,
#target_width=original_w)
plt.axis('off')
plt.tight_layout()
return fig
# CPU post process
def fast_show_mask(annotation, ax):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)[::1]
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
color = np.random.random((msak_sum, 1, 1, 3))
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
#if retinamask == False:
# show = cv2.resize(show, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
ax.imshow(show)
# post_process(results[0].masks, Image.open("../data/cake.png"))
def predict(input, input_size=512):
input_size = int(input_size) # 确保 imgsz 是整数
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
pil_image = fast_process(annotations=results[0].masks.data.numpy(), image=input)
return pil_image
# inp = 'assets/sa_192.jpg'
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
# results = format_results(results[0], 100)
# post_process(annotations=results, image_path=inp)
demo = gr.Interface(fn=predict,
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=512)],
outputs=['plot'],
examples=[["assets/sa_8776.jpg", 1024]],
# ["assets/sa_1309.jpg", 1024]],
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
)
demo.launch()
"""
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import torch
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
def format_results(result,filter = 0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation['id'] = i
annotation['segmentation'] = mask.cpu().numpy()
annotation['bbox'] = result.boxes.data[i]
annotation['score'] = result.boxes.conf[i]
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
def show_mask(annotation, ax, random_color=True, bbox=None, points=None):
if random_color : # random mask color
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
if type(annotation) == dict:
annotation = annotation['segmentation']
mask = annotation
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# draw box
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
ax.imshow(mask_image)
return mask_image
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None):
fig = plt.figure(figsize=(10, 10))
plt.imshow(image)
for i, mask in enumerate(annotations):
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
plt.axis('off')
plt.tight_layout()
return fig
# post_process(results[0].masks, Image.open("../data/cake.png"))
def predict(input, input_size):
input_size = int(input_size) # 确保 imgsz 是整数
results = model(input, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
results = format_results(results[0], 100)
results.sort(key=lambda x: x['area'], reverse=True)
pil_image = post_process(annotations=results, image=input)
return pil_image
# inp = 'assets/sa_192.jpg'
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
# results = format_results(results[0], 100)
# post_process(annotations=results, image_path=inp)
demo = gr.Interface(fn=predict,
inputs=[gr.inputs.Image(type='pil'), gr.inputs.Dropdown(choices=[512, 800, 1024], default=1024)],
outputs=['plot'],
examples=[["assets/sa_8776.jpg", 1024]],
# ["assets/sa_1309.jpg", 1024]],
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
# ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
# ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
)
demo.launch()
""" |