File size: 12,165 Bytes
86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a b0725be 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a c3787c7 86a505a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
import pandas as pd
import plotly.express as px
import os
from openai import OpenAI
import bcrypt
from supabase import create_client, Client
# Set up Supabase client
supabase_url = st.secrets["SUPABASE_URL"]
supabase_key = st.secrets["SUPABASE_KEY"]
supabase: Client = create_client(supabase_url, supabase_key)
# Set up OpenAI client
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
# Initialize session state
if 'user' not in st.session_state:
st.session_state.user = None
if 'user_type' not in st.session_state:
st.session_state.user_type = None
def load_data(username=None):
if username:
response = supabase.table('entries').select('*').eq('username', username).execute()
else:
response = supabase.table('entries').select('*').execute()
return pd.DataFrame(response.data)
def load_user_data():
response = supabase.table('users').select('*').execute()
return pd.DataFrame(response.data)
def save_data(entry):
supabase.table('entries').insert(entry).execute()
def save_user_data(username, hashed_password, user_type):
supabase.table('users').insert({
'username': username,
'password': hashed_password,
'user_type': user_type
}).execute()
def get_user(username):
response = supabase.table('users').select('*').eq('username', username).execute()
return pd.DataFrame(response.data)
def get_gpt_analysis(entry_text, system_prompt):
try:
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": entry_text}
]
)
return response.choices[0].message.content
except Exception as e:
st.error(f"Error in GPT analysis: {str(e)}")
return "Analysis unavailable at this time."
def hash_password(password):
return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
def verify_password(stored_password, provided_password):
return bcrypt.checkpw(provided_password.encode('utf-8'), stored_password.encode('utf-8'))
def auth():
if st.session_state.user is None:
st.subheader("User Authentication")
tabs = st.tabs(["Login", "Register"])
with tabs[0]:
st.subheader("Login")
login_username = st.text_input("Username", key="login_username")
login_password = st.text_input("Password", type="password", key="login_password")
login_button = st.button("Login")
if login_button:
user_data = get_user(login_username)
if not user_data.empty and verify_password(user_data.iloc[0]['password'], login_password):
st.session_state.user = login_username
st.session_state.user_type = user_data.iloc[0]['user_type']
st.success("Logged in successfully!")
st.rerun()
else:
st.error("Invalid username or password.")
with tabs[1]:
st.subheader("Register")
reg_username = st.text_input("Choose a Username", key="reg_username")
reg_password = st.text_input("Choose a Password", type="password", key="reg_password")
confirm_password = st.text_input("Confirm Password", type="password", key="confirm_password")
user_type = st.selectbox("User Type", ["Patient", "Doctor"])
register_button = st.button("Register")
if register_button:
existing_user = get_user(reg_username)
if not existing_user.empty:
st.error("Username already exists. Please choose a different one.")
elif reg_password != confirm_password:
st.error("Passwords do not match.")
elif len(reg_password) < 8:
st.error("Password must be at least 8 characters long.")
else:
hashed_password = hash_password(reg_password)
save_user_data(reg_username, hashed_password, user_type)
st.session_state.user = reg_username
st.session_state.user_type = user_type
st.success("Registered successfully!")
st.rerun()
else:
st.sidebar.write(f"Logged in as {st.session_state.user} ({st.session_state.user_type})")
if st.sidebar.button("Logout"):
st.session_state.user = None
st.session_state.user_type = None
st.rerun()
def main():
st.set_page_config(page_title="Migraine Diary App", page_icon="🧠", layout="wide")
st.title("Migraine Diary App")
auth()
if st.session_state.user:
if st.session_state.user_type == "Patient":
patient_interface()
elif st.session_state.user_type == "Doctor":
doctor_interface()
def patient_interface():
menu = st.sidebar.selectbox("Menu", ["Add Entry", "View Entries", "Dashboard"])
if menu == "Add Entry":
add_entry()
elif menu == "View Entries":
view_entries(is_doctor=False)
elif menu == "Dashboard":
display_dashboard(is_doctor=False)
def doctor_interface():
menu = st.sidebar.selectbox("Menu", ["View All Entries", "Patient Dashboard"])
if menu == "View All Entries":
view_entries(is_doctor=True)
elif menu == "Patient Dashboard":
display_dashboard(is_doctor=True)
def add_entry():
st.header("Add New Migraine Entry")
with st.form("migraine_entry"):
date = st.date_input("Date")
pain_level = st.slider("Pain Level", 1, 10)
duration = st.selectbox("Duration", ["Less than 1 hour", "1-4 hours", "4-8 hours", "8-24 hours", "More than 24 hours"])
triggers = st.multiselect("Triggers", [
"Stress", "Lack of Sleep", "Dehydration", "Skipped Meals",
"Alcohol", "Caffeine", "Chocolate", "Aged Cheeses",
"Processed Meats", "Artificial Sweeteners", "MSG",
"Weather Changes", "Barometric Pressure Changes",
"Bright Lights", "Loud Noises", "Strong Smells",
"Screen Time", "Reading", "Physical Exertion",
"Hormonal Changes", "Medication Overuse",
"Travel", "Altitude Changes", "Other"
])
symptoms = st.multiselect("Symptoms", [
"Throbbing Pain", "Pulsating Pain", "One-sided Pain",
"Nausea", "Vomiting", "Sensitivity to Light",
"Sensitivity to Sound", "Sensitivity to Smells",
"Blurred Vision", "Visual Aura", "Blind Spots",
"Zigzag Lines in Vision", "Tingling or Numbness",
"Difficulty Speaking", "Weakness", "Dizziness",
"Vertigo", "Neck Stiffness", "Confusion",
"Mood Changes", "Food Cravings", "Frequent Urination",
"Fatigue", "Yawning", "Other"
])
medications = st.text_input("Medications taken")
notes = st.text_area("Additional Notes")
submitted = st.form_submit_button("Submit Entry")
if submitted:
entry_text = f"Date: {date}\nPain Level: {pain_level}\nDuration: {duration}\nTriggers: {', '.join(triggers)}\nSymptoms: {', '.join(symptoms)}\nMedications: {medications}\nNotes: {notes}"
with st.spinner("Analyzing your entry..."):
doctor_analysis = get_gpt_analysis(entry_text, "You are a neurologist specializing in migraine management. Provide a technical analysis of the patient's migraine diary entry, including potential correlations, patterns, and suggestions for the treating physician. Keep it short and to the point the doctor is busy.")
patient_advice = get_gpt_analysis(entry_text, "You are a supportive health coach specializing in migraine management. Provide friendly, easy-to-understand advice for the patient based on their migraine diary entry. Include actionable tips for managing their condition and potential lifestyle adjustments.")
new_entry = {
'username': st.session_state.user,
'entry_date': date.isoformat(),
'pain_level': pain_level,
'duration': duration,
'triggers': ', '.join(triggers),
'symptoms': ', '.join(symptoms),
'medications': medications,
'notes': notes,
'doctor_analysis': doctor_analysis,
'patient_advice': patient_advice
}
save_data(new_entry)
st.success("Entry added successfully!")
st.subheader("Advice for You:")
st.write(patient_advice)
def view_entries(is_doctor):
st.header("Migraine Entries")
if is_doctor:
user_entries = load_data()
st.subheader("All Patient Entries")
else:
user_entries = load_data(st.session_state.user)
st.subheader("Your Entries")
user_entries = user_entries.sort_values(by='entry_date', ascending=False)
if not user_entries.empty:
for _, entry in user_entries.iterrows():
with st.expander(f"Entry for {entry['username']} on {entry['entry_date']} - Pain Level: {entry['pain_level']}"):
st.write(f"Duration: {entry['duration']}")
st.write(f"Triggers: {entry['triggers']}")
st.write(f"Symptoms: {entry['symptoms']}")
st.write(f"Medications: {entry['medications']}")
st.write(f"Notes: {entry['notes']}")
if is_doctor:
st.write("Doctor's Analysis:", entry['doctor_analysis'])
else:
st.write("Advice for Patient:", entry['patient_advice'])
else:
st.info("No entries found.")
def display_dashboard(is_doctor):
st.header("Migraine Dashboard")
if is_doctor:
st.subheader("Select Patient")
all_users = load_data()['username'].unique()
selected_user = st.selectbox("Choose a patient", all_users)
user_entries = load_data(selected_user)
else:
user_entries = load_data(st.session_state.user)
if not user_entries.empty:
col1, col2 = st.columns(2)
with col1:
st.subheader("Pain Level Over Time")
fig = px.line(user_entries, x='entry_date', y='pain_level', title='Pain Level Over Time')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.subheader("Common Triggers")
all_triggers = ', '.join(user_entries['triggers'].dropna()).split(', ')
trigger_counts = pd.Series(all_triggers).value_counts().head(5)
fig = px.bar(x=trigger_counts.index, y=trigger_counts.values, labels={'x': 'Trigger', 'y': 'Count'})
st.plotly_chart(fig, use_container_width=True)
col1, col2 = st.columns(2)
with col1:
st.subheader("Common Symptoms")
all_symptoms = ', '.join(user_entries['symptoms'].dropna()).split(', ')
symptom_counts = pd.Series(all_symptoms).value_counts().head(5)
fig = px.bar(x=symptom_counts.index, y=symptom_counts.values, labels={'x': 'Symptom', 'y': 'Count'})
st.plotly_chart(fig, use_container_width=True)
st.subheader("Migraine Statistics")
col1, col2, col3, col4 = st.columns(4)
col1.metric("Total Entries", len(user_entries))
col2.metric("Average Pain Level", f"{user_entries['pain_level'].mean():.2f}")
col3.metric("Most Common Trigger", trigger_counts.index[0] if not trigger_counts.empty else "N/A")
col4.metric("Most Common Symptom", symptom_counts.index[0] if not symptom_counts.empty else "N/A")
st.subheader("Recent Entries")
st.dataframe(user_entries[['entry_date', 'pain_level', 'duration', 'triggers', 'symptoms']].sort_values(by='entry_date', ascending=False).head())
else:
st.info("No entries found.")
if __name__ == "__main__":
main() |