Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
from datetime import datetime
|
5 |
+
import os
|
6 |
+
from openai import OpenAI
|
7 |
+
import csv
|
8 |
+
from io import StringIO
|
9 |
+
import bcrypt
|
10 |
+
|
11 |
+
# Set up OpenAI API key
|
12 |
+
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])
|
13 |
+
|
14 |
+
# Initialize session state
|
15 |
+
if 'user' not in st.session_state:
|
16 |
+
st.session_state.user = None
|
17 |
+
if 'user_type' not in st.session_state:
|
18 |
+
st.session_state.user_type = None
|
19 |
+
|
20 |
+
# File path for CSV database
|
21 |
+
CSV_FILE = "migraine_diary.csv"
|
22 |
+
USER_FILE = "users.csv"
|
23 |
+
|
24 |
+
# Function to load data from CSV
|
25 |
+
# @st.cache_data
|
26 |
+
def load_data():
|
27 |
+
if os.path.exists(CSV_FILE):
|
28 |
+
return pd.read_csv(CSV_FILE)
|
29 |
+
return pd.DataFrame(columns=['user', 'date', 'pain_level', 'duration', 'triggers', 'symptoms', 'medications', 'notes', 'doctor_analysis', 'patient_advice'])
|
30 |
+
|
31 |
+
# Function to load user data
|
32 |
+
# @st.cache_data
|
33 |
+
def load_user_data():
|
34 |
+
if os.path.exists(USER_FILE):
|
35 |
+
return pd.read_csv(USER_FILE)
|
36 |
+
return pd.DataFrame(columns=['username', 'password', 'user_type'])
|
37 |
+
|
38 |
+
# Function to save data to CSV
|
39 |
+
def save_data(df):
|
40 |
+
df.to_csv(CSV_FILE, index=False)
|
41 |
+
|
42 |
+
# Function to save user data
|
43 |
+
def save_user_data(df):
|
44 |
+
df.to_csv(USER_FILE, index=False)
|
45 |
+
|
46 |
+
# Function to get GPT analysis
|
47 |
+
def get_gpt_analysis(entry_text, system_prompt):
|
48 |
+
try:
|
49 |
+
response = client.chat.completions.create(
|
50 |
+
model="gpt-4o-mini",
|
51 |
+
messages=[
|
52 |
+
{"role": "system", "content": system_prompt},
|
53 |
+
{"role": "user", "content": entry_text}
|
54 |
+
]
|
55 |
+
)
|
56 |
+
return response.choices[0].message.content
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error in GPT analysis: {str(e)}")
|
59 |
+
return "Analysis unavailable at this time."
|
60 |
+
|
61 |
+
# Password hashing function
|
62 |
+
def hash_password(password):
|
63 |
+
return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
|
64 |
+
|
65 |
+
# Password verification function
|
66 |
+
def verify_password(stored_password, provided_password):
|
67 |
+
return bcrypt.checkpw(provided_password.encode('utf-8'), stored_password.encode('utf-8'))
|
68 |
+
|
69 |
+
# Login/Register function
|
70 |
+
def auth():
|
71 |
+
if st.session_state.user is None:
|
72 |
+
st.subheader("User Authentication")
|
73 |
+
tabs = st.tabs(["Login", "Register"])
|
74 |
+
|
75 |
+
with tabs[0]:
|
76 |
+
st.subheader("Login")
|
77 |
+
login_username = st.text_input("Username", key="login_username")
|
78 |
+
login_password = st.text_input("Password", type="password", key="login_password")
|
79 |
+
login_button = st.button("Login")
|
80 |
+
|
81 |
+
if login_button:
|
82 |
+
user_df = load_user_data()
|
83 |
+
user_data = user_df[user_df['username'] == login_username]
|
84 |
+
if not user_data.empty and verify_password(user_data.iloc[0]['password'], login_password):
|
85 |
+
st.session_state.user = login_username
|
86 |
+
st.session_state.user_type = user_data.iloc[0]['user_type']
|
87 |
+
st.success("Logged in successfully!")
|
88 |
+
st.rerun()
|
89 |
+
else:
|
90 |
+
st.error("Invalid username or password.")
|
91 |
+
|
92 |
+
with tabs[1]:
|
93 |
+
st.subheader("Register")
|
94 |
+
reg_username = st.text_input("Choose a Username", key="reg_username")
|
95 |
+
reg_password = st.text_input("Choose a Password", type="password", key="reg_password")
|
96 |
+
confirm_password = st.text_input("Confirm Password", type="password", key="confirm_password")
|
97 |
+
user_type = st.selectbox("User Type", ["Patient", "Doctor"])
|
98 |
+
register_button = st.button("Register")
|
99 |
+
|
100 |
+
if register_button:
|
101 |
+
user_df = load_user_data()
|
102 |
+
if reg_username in user_df['username'].values:
|
103 |
+
st.error("Username already exists. Please choose a different one.")
|
104 |
+
elif reg_password != confirm_password:
|
105 |
+
st.error("Passwords do not match.")
|
106 |
+
elif len(reg_password) < 1:
|
107 |
+
st.error("Password must be at least 8 characters long.")
|
108 |
+
else:
|
109 |
+
hashed_password = hash_password(reg_password)
|
110 |
+
new_user = pd.DataFrame({'username': [reg_username], 'password': [hashed_password], 'user_type': [user_type]})
|
111 |
+
user_df = pd.concat([user_df, new_user], ignore_index=True)
|
112 |
+
save_user_data(user_df)
|
113 |
+
st.session_state.user = reg_username
|
114 |
+
st.session_state.user_type = user_type
|
115 |
+
st.success("Registered successfully!")
|
116 |
+
st.rerun()
|
117 |
+
else:
|
118 |
+
st.sidebar.write(f"Logged in as {st.session_state.user} ({st.session_state.user_type})")
|
119 |
+
if st.sidebar.button("Logout"):
|
120 |
+
st.session_state.user = None
|
121 |
+
st.session_state.user_type = None
|
122 |
+
st.rerun()
|
123 |
+
|
124 |
+
# Main app
|
125 |
+
def main():
|
126 |
+
st.set_page_config(page_title="Migraine Diary App", page_icon="🧠", layout="wide")
|
127 |
+
st.title("Migraine Diary App")
|
128 |
+
|
129 |
+
auth()
|
130 |
+
|
131 |
+
if st.session_state.user:
|
132 |
+
if st.session_state.user_type == "Patient":
|
133 |
+
patient_interface()
|
134 |
+
elif st.session_state.user_type == "Doctor":
|
135 |
+
doctor_interface()
|
136 |
+
|
137 |
+
def patient_interface():
|
138 |
+
menu = st.sidebar.selectbox("Menu", ["Add Entry", "View Entries", "Dashboard"])
|
139 |
+
|
140 |
+
if menu == "Add Entry":
|
141 |
+
add_entry()
|
142 |
+
elif menu == "View Entries":
|
143 |
+
view_entries(is_doctor=False)
|
144 |
+
elif menu == "Dashboard":
|
145 |
+
display_dashboard(is_doctor=False)
|
146 |
+
|
147 |
+
def doctor_interface():
|
148 |
+
menu = st.sidebar.selectbox("Menu", ["View All Entries", "Patient Dashboard"])
|
149 |
+
|
150 |
+
if menu == "View All Entries":
|
151 |
+
view_entries(is_doctor=True)
|
152 |
+
elif menu == "Patient Dashboard":
|
153 |
+
display_dashboard(is_doctor=True)
|
154 |
+
|
155 |
+
def add_entry():
|
156 |
+
st.header("Add New Migraine Entry")
|
157 |
+
with st.form("migraine_entry"):
|
158 |
+
date = st.date_input("Date")
|
159 |
+
pain_level = st.slider("Pain Level", 1, 10)
|
160 |
+
duration = st.selectbox("Duration", ["Less than 1 hour", "1-4 hours", "4-8 hours", "8-24 hours", "More than 24 hours"])
|
161 |
+
|
162 |
+
triggers = st.multiselect("Triggers", [
|
163 |
+
"Stress", "Lack of Sleep", "Dehydration", "Skipped Meals",
|
164 |
+
"Alcohol", "Caffeine", "Chocolate", "Aged Cheeses",
|
165 |
+
"Processed Meats", "Artificial Sweeteners", "MSG",
|
166 |
+
"Weather Changes", "Barometric Pressure Changes",
|
167 |
+
"Bright Lights", "Loud Noises", "Strong Smells",
|
168 |
+
"Screen Time", "Reading", "Physical Exertion",
|
169 |
+
"Hormonal Changes", "Medication Overuse",
|
170 |
+
"Travel", "Altitude Changes", "Other"
|
171 |
+
])
|
172 |
+
|
173 |
+
symptoms = st.multiselect("Symptoms", [
|
174 |
+
"Throbbing Pain", "Pulsating Pain", "One-sided Pain",
|
175 |
+
"Nausea", "Vomiting", "Sensitivity to Light",
|
176 |
+
"Sensitivity to Sound", "Sensitivity to Smells",
|
177 |
+
"Blurred Vision", "Visual Aura", "Blind Spots",
|
178 |
+
"Zigzag Lines in Vision", "Tingling or Numbness",
|
179 |
+
"Difficulty Speaking", "Weakness", "Dizziness",
|
180 |
+
"Vertigo", "Neck Stiffness", "Confusion",
|
181 |
+
"Mood Changes", "Food Cravings", "Frequent Urination",
|
182 |
+
"Fatigue", "Yawning", "Other"
|
183 |
+
])
|
184 |
+
|
185 |
+
medications = st.text_input("Medications taken")
|
186 |
+
notes = st.text_area("Additional Notes")
|
187 |
+
|
188 |
+
submitted = st.form_submit_button("Submit Entry")
|
189 |
+
if submitted:
|
190 |
+
df = load_data()
|
191 |
+
entry_text = f"Date: {date}\nPain Level: {pain_level}\nDuration: {duration}\nTriggers: {', '.join(triggers)}\nSymptoms: {', '.join(symptoms)}\nMedications: {medications}\nNotes: {notes}"
|
192 |
+
|
193 |
+
with st.spinner("Analyzing your entry..."):
|
194 |
+
doctor_analysis = get_gpt_analysis(entry_text, "You are a neurologist specializing in migraine management. Provide a technical analysis of the patient's migraine diary entry, including potential correlations, patterns, and suggestions for the treating physician. Keep it short and to the point the doctor is busy.")
|
195 |
+
patient_advice = get_gpt_analysis(entry_text, "You are a supportive health coach specializing in migraine management. Provide friendly, easy-to-understand advice for the patient based on their migraine diary entry. Include actionable tips for managing their condition and potential lifestyle adjustments.")
|
196 |
+
|
197 |
+
new_entry = pd.DataFrame({
|
198 |
+
'user': [st.session_state.user],
|
199 |
+
'date': [date],
|
200 |
+
'pain_level': [pain_level],
|
201 |
+
'duration': [duration],
|
202 |
+
'triggers': [', '.join(triggers)],
|
203 |
+
'symptoms': [', '.join(symptoms)],
|
204 |
+
'medications': [medications],
|
205 |
+
'notes': [notes],
|
206 |
+
'doctor_analysis': [doctor_analysis],
|
207 |
+
'patient_advice': [patient_advice]
|
208 |
+
})
|
209 |
+
df = pd.concat([df, new_entry], ignore_index=True)
|
210 |
+
save_data(df)
|
211 |
+
st.success("Entry added successfully!")
|
212 |
+
st.subheader("Advice for You:")
|
213 |
+
st.write(patient_advice)
|
214 |
+
|
215 |
+
def view_entries(is_doctor):
|
216 |
+
st.header("Migraine Entries")
|
217 |
+
df = load_data()
|
218 |
+
if is_doctor:
|
219 |
+
user_entries = df
|
220 |
+
st.subheader("All Patient Entries")
|
221 |
+
else:
|
222 |
+
user_entries = df[df['user'] == st.session_state.user]
|
223 |
+
print(st.session_state.user)
|
224 |
+
print(user_entries)
|
225 |
+
st.subheader("Your Entries")
|
226 |
+
|
227 |
+
user_entries = user_entries.sort_values(by='date', ascending=False)
|
228 |
+
|
229 |
+
if not user_entries.empty:
|
230 |
+
for _, entry in user_entries.iterrows():
|
231 |
+
with st.expander(f"Entry for {entry['user']} on {entry['date']} - Pain Level: {entry['pain_level']}"):
|
232 |
+
st.write(f"Duration: {entry['duration']}")
|
233 |
+
st.write(f"Triggers: {entry['triggers']}")
|
234 |
+
st.write(f"Symptoms: {entry['symptoms']}")
|
235 |
+
st.write(f"Medications: {entry['medications']}")
|
236 |
+
st.write(f"Notes: {entry['notes']}")
|
237 |
+
if is_doctor:
|
238 |
+
st.write("Doctor's Analysis:", entry['doctor_analysis'])
|
239 |
+
st.write("Advice for Patient:", entry['patient_advice'])
|
240 |
+
else:
|
241 |
+
st.info("No entries found.")
|
242 |
+
|
243 |
+
def display_dashboard(is_doctor):
|
244 |
+
st.header("Migraine Dashboard")
|
245 |
+
df = load_data()
|
246 |
+
|
247 |
+
if is_doctor:
|
248 |
+
st.subheader("Select Patient")
|
249 |
+
selected_user = st.selectbox("Choose a patient", df['user'].unique())
|
250 |
+
user_entries = df[df['user'] == selected_user]
|
251 |
+
else:
|
252 |
+
user_entries = df[df['user'] == st.session_state.user]
|
253 |
+
|
254 |
+
if not user_entries.empty:
|
255 |
+
col1, col2 = st.columns(2)
|
256 |
+
|
257 |
+
with col1:
|
258 |
+
st.subheader("Pain Level Over Time")
|
259 |
+
fig = px.line(user_entries, x='date', y='pain_level', title='Pain Level Over Time')
|
260 |
+
st.plotly_chart(fig, use_container_width=True)
|
261 |
+
|
262 |
+
with col2:
|
263 |
+
st.subheader("Common Triggers")
|
264 |
+
all_triggers = ', '.join(user_entries['triggers'].dropna()).split(', ')
|
265 |
+
trigger_counts = pd.Series(all_triggers).value_counts().head(5)
|
266 |
+
fig = px.bar(x=trigger_counts.index, y=trigger_counts.values, labels={'x': 'Trigger', 'y': 'Count'})
|
267 |
+
st.plotly_chart(fig, use_container_width=True)
|
268 |
+
|
269 |
+
st.subheader("Migraine Statistics")
|
270 |
+
col1, col2, col3 = st.columns(3)
|
271 |
+
col1.metric("Total Entries", len(user_entries))
|
272 |
+
col2.metric("Average Pain Level", f"{user_entries['pain_level'].mean():.2f}")
|
273 |
+
col3.metric("Most Common Trigger", trigger_counts.index[0] if not trigger_counts.empty else "N/A")
|
274 |
+
|
275 |
+
st.subheader("Recent Entries")
|
276 |
+
st.dataframe(user_entries[['date', 'pain_level', 'duration', 'triggers']].sort_values(by='date', ascending=False).head())
|
277 |
+
else:
|
278 |
+
st.info("No entries found.")
|
279 |
+
|
280 |
+
if __name__ == "__main__":
|
281 |
+
main()
|