File size: 11,873 Bytes
86a505a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0725be
 
86a505a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import streamlit as st
import pandas as pd
import plotly.express as px
import os
from openai import OpenAI
import bcrypt

# Set up OpenAI API key
client = OpenAI(api_key=st.secrets["OPENAI_API_KEY"])

# Initialize session state
if 'user' not in st.session_state:
    st.session_state.user = None
if 'user_type' not in st.session_state:
    st.session_state.user_type = None

# File path for CSV database
CSV_FILE = "migraine_diary.csv"
USER_FILE = "users.csv"

# Function to load data from CSV
# @st.cache_data
def load_data():
    if os.path.exists(CSV_FILE):
        return pd.read_csv(CSV_FILE)
    return pd.DataFrame(columns=['user', 'date', 'pain_level', 'duration', 'triggers', 'symptoms', 'medications', 'notes', 'doctor_analysis', 'patient_advice'])

# Function to load user data
# @st.cache_data
def load_user_data():
    if os.path.exists(USER_FILE):
        return pd.read_csv(USER_FILE)
    return pd.DataFrame(columns=['username', 'password', 'user_type'])

# Function to save data to CSV
def save_data(df):
    df.to_csv(CSV_FILE, index=False)

# Function to save user data
def save_user_data(df):
    df.to_csv(USER_FILE, index=False)

# Function to get GPT analysis
def get_gpt_analysis(entry_text, system_prompt):
    try:
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": entry_text}
            ]
        )
        return response.choices[0].message.content
    except Exception as e:
        st.error(f"Error in GPT analysis: {str(e)}")
        return "Analysis unavailable at this time."

# Password hashing function
def hash_password(password):
    return bcrypt.hashpw(password.encode('utf-8'), bcrypt.gensalt()).decode('utf-8')

# Password verification function
def verify_password(stored_password, provided_password):
    return bcrypt.checkpw(provided_password.encode('utf-8'), stored_password.encode('utf-8'))

# Login/Register function
def auth():
    if st.session_state.user is None:
        st.subheader("User Authentication")
        tabs = st.tabs(["Login", "Register"])
        
        with tabs[0]:
            st.subheader("Login")
            login_username = st.text_input("Username", key="login_username")
            login_password = st.text_input("Password", type="password", key="login_password")
            login_button = st.button("Login")
            
            if login_button:
                user_df = load_user_data()
                user_data = user_df[user_df['username'] == login_username]
                if not user_data.empty and verify_password(user_data.iloc[0]['password'], login_password):
                    st.session_state.user = login_username
                    st.session_state.user_type = user_data.iloc[0]['user_type']
                    st.success("Logged in successfully!")
                    st.rerun()
                else:
                    st.error("Invalid username or password.")
        
        with tabs[1]:
            st.subheader("Register")
            reg_username = st.text_input("Choose a Username", key="reg_username")
            reg_password = st.text_input("Choose a Password", type="password", key="reg_password")
            confirm_password = st.text_input("Confirm Password", type="password", key="confirm_password")
            user_type = st.selectbox("User Type", ["Patient", "Doctor"])
            register_button = st.button("Register")
            
            if register_button:
                user_df = load_user_data()
                if reg_username in user_df['username'].values:
                    st.error("Username already exists. Please choose a different one.")
                elif reg_password != confirm_password:
                    st.error("Passwords do not match.")
                elif len(reg_password) < 1:
                    st.error("Password must be at least 8 characters long.")
                else:
                    hashed_password = hash_password(reg_password)
                    new_user = pd.DataFrame({'username': [reg_username], 'password': [hashed_password], 'user_type': [user_type]})
                    user_df = pd.concat([user_df, new_user], ignore_index=True)
                    save_user_data(user_df)
                    st.session_state.user = reg_username
                    st.session_state.user_type = user_type
                    st.success("Registered successfully!")
                    st.rerun()
    else:
        st.sidebar.write(f"Logged in as {st.session_state.user} ({st.session_state.user_type})")
        if st.sidebar.button("Logout"):
            st.session_state.user = None
            st.session_state.user_type = None
            st.rerun()

# Main app
def main():
    st.set_page_config(page_title="Migraine Diary App", page_icon="🧠", layout="wide")
    st.title("Migraine Diary App")

    auth()

    if st.session_state.user:
        if st.session_state.user_type == "Patient":
            patient_interface()
        elif st.session_state.user_type == "Doctor":
            doctor_interface()

def patient_interface():
    menu = st.sidebar.selectbox("Menu", ["Add Entry", "View Entries", "Dashboard"])

    if menu == "Add Entry":
        add_entry()
    elif menu == "View Entries":
        view_entries(is_doctor=False)
    elif menu == "Dashboard":
        display_dashboard(is_doctor=False)

def doctor_interface():
    menu = st.sidebar.selectbox("Menu", ["View All Entries", "Patient Dashboard"])

    if menu == "View All Entries":
        view_entries(is_doctor=True)
    elif menu == "Patient Dashboard":
        display_dashboard(is_doctor=True)

def add_entry():
    st.header("Add New Migraine Entry")
    with st.form("migraine_entry"):
        date = st.date_input("Date")
        pain_level = st.slider("Pain Level", 1, 10)
        duration = st.selectbox("Duration", ["Less than 1 hour", "1-4 hours", "4-8 hours", "8-24 hours", "More than 24 hours"])
        
        triggers = st.multiselect("Triggers", [
            "Stress", "Lack of Sleep", "Dehydration", "Skipped Meals",
            "Alcohol", "Caffeine", "Chocolate", "Aged Cheeses",
            "Processed Meats", "Artificial Sweeteners", "MSG",
            "Weather Changes", "Barometric Pressure Changes",
            "Bright Lights", "Loud Noises", "Strong Smells",
            "Screen Time", "Reading", "Physical Exertion",
            "Hormonal Changes", "Medication Overuse",
            "Travel", "Altitude Changes", "Other"
        ])
        
        symptoms = st.multiselect("Symptoms", [
            "Throbbing Pain", "Pulsating Pain", "One-sided Pain",
            "Nausea", "Vomiting", "Sensitivity to Light",
            "Sensitivity to Sound", "Sensitivity to Smells",
            "Blurred Vision", "Visual Aura", "Blind Spots",
            "Zigzag Lines in Vision", "Tingling or Numbness",
            "Difficulty Speaking", "Weakness", "Dizziness",
            "Vertigo", "Neck Stiffness", "Confusion",
            "Mood Changes", "Food Cravings", "Frequent Urination",
            "Fatigue", "Yawning", "Other"
        ])
        
        medications = st.text_input("Medications taken")
        notes = st.text_area("Additional Notes")
        
        submitted = st.form_submit_button("Submit Entry")
        if submitted:
            df = load_data()
            entry_text = f"Date: {date}\nPain Level: {pain_level}\nDuration: {duration}\nTriggers: {', '.join(triggers)}\nSymptoms: {', '.join(symptoms)}\nMedications: {medications}\nNotes: {notes}"
            
            with st.spinner("Analyzing your entry..."):
                doctor_analysis = get_gpt_analysis(entry_text, "You are a neurologist specializing in migraine management. Provide a technical analysis of the patient's migraine diary entry, including potential correlations, patterns, and suggestions for the treating physician. Keep it short and to the point the doctor is busy.")
                patient_advice = get_gpt_analysis(entry_text, "You are a supportive health coach specializing in migraine management. Provide friendly, easy-to-understand advice for the patient based on their migraine diary entry. Include actionable tips for managing their condition and potential lifestyle adjustments.")

            new_entry = pd.DataFrame({
                'user': [st.session_state.user],
                'date': [date],
                'pain_level': [pain_level],
                'duration': [duration],
                'triggers': [', '.join(triggers)],
                'symptoms': [', '.join(symptoms)],
                'medications': [medications],
                'notes': [notes],
                'doctor_analysis': [doctor_analysis],
                'patient_advice': [patient_advice]
            })
            df = pd.concat([df, new_entry], ignore_index=True)
            save_data(df)
            st.success("Entry added successfully!")
            st.subheader("Advice for You:")
            st.write(patient_advice)

def view_entries(is_doctor):
    st.header("Migraine Entries")
    df = load_data()
    if is_doctor:
        user_entries = df
        st.subheader("All Patient Entries")
    else:
        user_entries = df[df['user'] == st.session_state.user]
        print(st.session_state.user)
        print(user_entries)
        st.subheader("Your Entries")
    
    user_entries = user_entries.sort_values(by='date', ascending=False)
    
    if not user_entries.empty:
        for _, entry in user_entries.iterrows():
            with st.expander(f"Entry for {entry['user']} on {entry['date']} - Pain Level: {entry['pain_level']}"):
                st.write(f"Duration: {entry['duration']}")
                st.write(f"Triggers: {entry['triggers']}")
                st.write(f"Symptoms: {entry['symptoms']}")
                st.write(f"Medications: {entry['medications']}")
                st.write(f"Notes: {entry['notes']}")
                if is_doctor:
                    st.write("Doctor's Analysis:", entry['doctor_analysis'])
                else:
                    st.write("Advice for Patient:", entry['patient_advice'])
    else:
        st.info("No entries found.")

def display_dashboard(is_doctor):
    st.header("Migraine Dashboard")
    df = load_data()
    
    if is_doctor:
        st.subheader("Select Patient")
        selected_user = st.selectbox("Choose a patient", df['user'].unique())
        user_entries = df[df['user'] == selected_user]
    else:
        user_entries = df[df['user'] == st.session_state.user]

    if not user_entries.empty:
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Pain Level Over Time")
            fig = px.line(user_entries, x='date', y='pain_level', title='Pain Level Over Time')
            st.plotly_chart(fig, use_container_width=True)

        with col2:
            st.subheader("Common Triggers")
            all_triggers = ', '.join(user_entries['triggers'].dropna()).split(', ')
            trigger_counts = pd.Series(all_triggers).value_counts().head(5)
            fig = px.bar(x=trigger_counts.index, y=trigger_counts.values, labels={'x': 'Trigger', 'y': 'Count'})
            st.plotly_chart(fig, use_container_width=True)

        st.subheader("Migraine Statistics")
        col1, col2, col3 = st.columns(3)
        col1.metric("Total Entries", len(user_entries))
        col2.metric("Average Pain Level", f"{user_entries['pain_level'].mean():.2f}")
        col3.metric("Most Common Trigger", trigger_counts.index[0] if not trigger_counts.empty else "N/A")

        st.subheader("Recent Entries")
        st.dataframe(user_entries[['date', 'pain_level', 'duration', 'triggers']].sort_values(by='date', ascending=False).head())
    else:
        st.info("No entries found.")

if __name__ == "__main__":
    main()