File size: 2,805 Bytes
6616d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#https://huggingface.co/spaces/Xuratron/abstract-speech-summarizer

# Here are the imports
import PyPDF2
import re
import torch
from transformers import pipeline
import soundfile as sf
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
import gradio as gr


# Here is the code

def extract_and_clean_abstract(uploaded_file):
    """
    Extracts and cleans the abstract from the uploaded PDF file.
    """
    reader = PyPDF2.PdfReader(uploaded_file.file)
    text = ""
    for page in reader.pages:
        text += page.extract_text() or ""

    # Regular expression pattern to find the abstract
    pattern = r"(Abstract|ABSTRACT|abstract)(.*?)(Introduction|INTRODUCTION|introduction|1|Keywords|KEYWORDS|keywords)"
    match = re.search(pattern, text, re.DOTALL)

    if match:
        abstract = match.group(2).strip()
    else:
        abstract = "Abstract not found."

    # Clean the abstract text
    cleaned_abstract = abstract.replace('\n', ' ').replace('- ', '')

    return cleaned_abstract

def summarize_text(hf_model_name, text):
    """
    Summarizes the given text using a Hugging Face model.
    """
    summarizer = pipeline("summarization", model=hf_model_name)
    summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
    return summary

def text_to_speech(text):
    """
    Converts text to speech using a Hugging Face model.
    """
    models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
        "facebook/fastspeech2-en-ljspeech",
        arg_overrides={"vocoder": "hifigan", "fp16": False}
    )
    model = models[0]
    TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
    generator = task.build_generator([model], cfg)
    sample = TTSHubInterface.get_model_input(task, text)
    wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
    
    return wav, rate

def process_pdf(uploaded_file, hf_model_name):
    """
    Processes the uploaded PDF file to extract, summarize the abstract, and convert it to speech.
    """
    abstract = extract_and_clean_abstract(uploaded_file)
    summary = summarize_text(hf_model_name, abstract)
    wav, rate = text_to_speech(summary)
    sf.write('/tmp/speech_output.wav', wav, rate)
    return '/tmp/speech_output.wav'

iface = gr.Interface(
    fn=process_pdf,
    inputs=[
        gr.inputs.File(label="Upload PDF", type="pdf"),
        gr.inputs.Textbox(label="Hugging Face Model Name for Summarization")
    ],
    outputs=gr.outputs.Audio(label="Audio Summary"),
    title="PDF Abstract to Speech",
    description="Extracts and summarizes the abstract from a PDF file and converts it to speech."
)

if __name__ == "__main__":
    iface.launch()