Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#https://huggingface.co/spaces/Xuratron/abstract-speech-summarizer
|
| 2 |
+
|
| 3 |
+
# Here are the imports
|
| 4 |
+
import PyPDF2
|
| 5 |
+
import re
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
| 10 |
+
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
|
| 11 |
+
import gradio as gr
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Here is the code
|
| 15 |
+
|
| 16 |
+
def extract_and_clean_abstract(uploaded_file):
|
| 17 |
+
"""
|
| 18 |
+
Extracts and cleans the abstract from the uploaded PDF file.
|
| 19 |
+
"""
|
| 20 |
+
reader = PyPDF2.PdfReader(uploaded_file.file)
|
| 21 |
+
text = ""
|
| 22 |
+
for page in reader.pages:
|
| 23 |
+
text += page.extract_text() or ""
|
| 24 |
+
|
| 25 |
+
# Regular expression pattern to find the abstract
|
| 26 |
+
pattern = r"(Abstract|ABSTRACT|abstract)(.*?)(Introduction|INTRODUCTION|introduction|1|Keywords|KEYWORDS|keywords)"
|
| 27 |
+
match = re.search(pattern, text, re.DOTALL)
|
| 28 |
+
|
| 29 |
+
if match:
|
| 30 |
+
abstract = match.group(2).strip()
|
| 31 |
+
else:
|
| 32 |
+
abstract = "Abstract not found."
|
| 33 |
+
|
| 34 |
+
# Clean the abstract text
|
| 35 |
+
cleaned_abstract = abstract.replace('\n', ' ').replace('- ', '')
|
| 36 |
+
|
| 37 |
+
return cleaned_abstract
|
| 38 |
+
|
| 39 |
+
def summarize_text(hf_model_name, text):
|
| 40 |
+
"""
|
| 41 |
+
Summarizes the given text using a Hugging Face model.
|
| 42 |
+
"""
|
| 43 |
+
summarizer = pipeline("summarization", model=hf_model_name)
|
| 44 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
|
| 45 |
+
return summary
|
| 46 |
+
|
| 47 |
+
def text_to_speech(text):
|
| 48 |
+
"""
|
| 49 |
+
Converts text to speech using a Hugging Face model.
|
| 50 |
+
"""
|
| 51 |
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
| 52 |
+
"facebook/fastspeech2-en-ljspeech",
|
| 53 |
+
arg_overrides={"vocoder": "hifigan", "fp16": False}
|
| 54 |
+
)
|
| 55 |
+
model = models[0]
|
| 56 |
+
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
|
| 57 |
+
generator = task.build_generator([model], cfg)
|
| 58 |
+
sample = TTSHubInterface.get_model_input(task, text)
|
| 59 |
+
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
|
| 60 |
+
|
| 61 |
+
return wav, rate
|
| 62 |
+
|
| 63 |
+
def process_pdf(uploaded_file, hf_model_name):
|
| 64 |
+
"""
|
| 65 |
+
Processes the uploaded PDF file to extract, summarize the abstract, and convert it to speech.
|
| 66 |
+
"""
|
| 67 |
+
abstract = extract_and_clean_abstract(uploaded_file)
|
| 68 |
+
summary = summarize_text(hf_model_name, abstract)
|
| 69 |
+
wav, rate = text_to_speech(summary)
|
| 70 |
+
sf.write('/tmp/speech_output.wav', wav, rate)
|
| 71 |
+
return '/tmp/speech_output.wav'
|
| 72 |
+
|
| 73 |
+
iface = gr.Interface(
|
| 74 |
+
fn=process_pdf,
|
| 75 |
+
inputs=[
|
| 76 |
+
gr.inputs.File(label="Upload PDF", type="pdf"),
|
| 77 |
+
gr.inputs.Textbox(label="Hugging Face Model Name for Summarization")
|
| 78 |
+
],
|
| 79 |
+
outputs=gr.outputs.Audio(label="Audio Summary"),
|
| 80 |
+
title="PDF Abstract to Speech",
|
| 81 |
+
description="Extracts and summarizes the abstract from a PDF file and converts it to speech."
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
iface.launch()
|
| 86 |
+
|