Update app.py
Browse files
app.py
CHANGED
@@ -2,43 +2,57 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
# Загружаем модель GPT-2
|
6 |
-
model_name = "
|
7 |
try:
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
-
# Устанавливаем pad_token, если
|
11 |
if tokenizer.pad_token is None:
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
13 |
except Exception as e:
|
14 |
print(f"Ошибка загрузки модели: {e}")
|
15 |
exit(1)
|
16 |
|
17 |
-
def respond(message, history, max_tokens=
|
18 |
history = history or []
|
19 |
-
# Формируем
|
20 |
-
input_text = "
|
|
|
|
|
|
|
21 |
|
22 |
# Токенизация
|
23 |
try:
|
24 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
return f"Ошибка токенизации: {e}", history
|
27 |
|
28 |
# Генерация ответа
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
40 |
except Exception as e:
|
41 |
-
return f"Ошибка
|
42 |
|
43 |
# Форматируем ответ
|
44 |
formatted_response = format_response(response)
|
@@ -53,34 +67,70 @@ def format_response(response):
|
|
53 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
54 |
|
55 |
def extract_diagnosis(response):
|
56 |
-
|
|
|
|
|
57 |
|
58 |
def extract_operation(response):
|
|
|
59 |
return "Не требуется"
|
60 |
|
61 |
def extract_treatment(response):
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
with gr.Blocks() as demo:
|
66 |
-
gr.Markdown("## Медицинский чат-бот на базе
|
67 |
-
chatbot = gr.Chatbot(label="
|
68 |
-
msg = gr.Textbox(
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
clear = gr.Button("Очистить чат")
|
73 |
state = gr.State(value=[])
|
74 |
|
75 |
def submit_message(message, history, max_tokens, temperature, top_p):
|
|
|
|
|
76 |
response, updated_history = respond(message, history, max_tokens, temperature, top_p)
|
77 |
return [(message, response)], updated_history, ""
|
78 |
|
79 |
def clear_chat():
|
80 |
return [], [], ""
|
81 |
|
82 |
-
msg.submit(
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Загружаем локальную модель distilgpt2 (более легкая, чем GPT-2)
|
6 |
+
model_name = "distilgpt2"
|
7 |
try:
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
9 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
# Устанавливаем pad_token, если не задан
|
11 |
if tokenizer.pad_token is None:
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
+
model.eval() # Режим оценки для оптимизации
|
14 |
except Exception as e:
|
15 |
print(f"Ошибка загрузки модели: {e}")
|
16 |
exit(1)
|
17 |
|
18 |
+
def respond(message, history, max_tokens=256, temperature=0.7, top_p=0.9):
|
19 |
history = history or []
|
20 |
+
# Формируем входной текст с историей
|
21 |
+
input_text = ""
|
22 |
+
for user_msg, bot_msg in history:
|
23 |
+
input_text += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
24 |
+
input_text += f"User: {message}"
|
25 |
|
26 |
# Токенизация
|
27 |
try:
|
28 |
+
inputs = tokenizer(
|
29 |
+
input_text,
|
30 |
+
return_tensors="pt",
|
31 |
+
truncation=True,
|
32 |
+
max_length=512,
|
33 |
+
padding=True
|
34 |
+
)
|
35 |
except Exception as e:
|
36 |
return f"Ошибка токенизации: {e}", history
|
37 |
|
38 |
# Генерация ответа
|
39 |
try:
|
40 |
+
with torch.no_grad(): # Отключаем градиенты для экономии памяти
|
41 |
+
outputs = model.generate(
|
42 |
+
inputs["input_ids"],
|
43 |
+
max_length=max_tokens,
|
44 |
+
temperature=temperature,
|
45 |
+
top_p=top_p,
|
46 |
+
do_sample=True,
|
47 |
+
pad_token_id=tokenizer.eos_token_id,
|
48 |
+
no_repeat_ngram_size=2,
|
49 |
+
num_beams=2 # Добавляем beam search для лучшего качества
|
50 |
+
)
|
51 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
# Удаляем входной текст из ответа
|
53 |
+
response = response[len(input_text):].strip()
|
54 |
except Exception as e:
|
55 |
+
return f"Ошибка генерации ответа: {e}", history
|
56 |
|
57 |
# Форматируем ответ
|
58 |
formatted_response = format_response(response)
|
|
|
67 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
68 |
|
69 |
def extract_diagnosis(response):
|
70 |
+
# Простое извлечение диагноза
|
71 |
+
sentences = response.split(".")
|
72 |
+
return sentences[0].strip() if sentences else response.strip()
|
73 |
|
74 |
def extract_operation(response):
|
75 |
+
# Упрощенная логика: операция не требуется
|
76 |
return "Не требуется"
|
77 |
|
78 |
def extract_treatment(response):
|
79 |
+
# Извлечение лечения
|
80 |
+
sentences = response.split(".")
|
81 |
+
return sentences[-1].strip() if len(sentences) > 1 else "Не указано"
|
82 |
|
83 |
+
# Gradio интерфейс
|
84 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
85 |
+
gr.Markdown("## Медицинский чат-бот (на базе DistilGPT-2)")
|
86 |
+
chatbot = gr.Chatbot(label="История чата", height=400)
|
87 |
+
msg = gr.Textbox(
|
88 |
+
label="Ваше со��бщение",
|
89 |
+
placeholder="Опишите симптомы (например, 'Болит голова и температура')...",
|
90 |
+
lines=2
|
91 |
+
)
|
92 |
+
with gr.Row():
|
93 |
+
max_tokens = gr.Slider(
|
94 |
+
minimum=50,
|
95 |
+
maximum=512,
|
96 |
+
value=256,
|
97 |
+
step=10,
|
98 |
+
label="Макс. токенов"
|
99 |
+
)
|
100 |
+
temperature = gr.Slider(
|
101 |
+
minimum=0.1,
|
102 |
+
maximum=1.5,
|
103 |
+
value=0.7,
|
104 |
+
label="Температура"
|
105 |
+
)
|
106 |
+
top_p = gr.Slider(
|
107 |
+
minimum=0.1,
|
108 |
+
maximum=1.0,
|
109 |
+
value=0.9,
|
110 |
+
label="Top-p"
|
111 |
+
)
|
112 |
clear = gr.Button("Очистить чат")
|
113 |
state = gr.State(value=[])
|
114 |
|
115 |
def submit_message(message, history, max_tokens, temperature, top_p):
|
116 |
+
if not message.strip():
|
117 |
+
return [], history, "Пожалуйста, введите сообщение."
|
118 |
response, updated_history = respond(message, history, max_tokens, temperature, top_p)
|
119 |
return [(message, response)], updated_history, ""
|
120 |
|
121 |
def clear_chat():
|
122 |
return [], [], ""
|
123 |
|
124 |
+
msg.submit(
|
125 |
+
fn=submit_message,
|
126 |
+
inputs=[msg, state, max_tokens, temperature, top_p],
|
127 |
+
outputs=[chatbot, state, msg],
|
128 |
+
queue=True
|
129 |
+
)
|
130 |
+
clear.click(
|
131 |
+
fn=clear_chat,
|
132 |
+
outputs=[chatbot, state, msg]
|
133 |
+
)
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|