Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,28 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
# Загружаем модель GPT-2
|
6 |
model_name = "gpt2"
|
7 |
try:
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
10 |
except Exception as e:
|
11 |
print(f"Ошибка загрузки модели: {e}")
|
12 |
exit(1)
|
13 |
|
14 |
def respond(message, history, max_tokens=512, temperature=0.7, top_p=0.95):
|
15 |
-
# Формируем историю чата
|
16 |
history = history or []
|
|
|
17 |
input_text = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history] + [f"User: {message}"])
|
18 |
|
19 |
# Токенизация
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
# Генерация ответа
|
23 |
try:
|
@@ -32,72 +38,49 @@ def respond(message, history, max_tokens=512, temperature=0.7, top_p=0.95):
|
|
32 |
)
|
33 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
except Exception as e:
|
35 |
-
return f"Ошибка
|
36 |
|
37 |
# Форматируем ответ
|
38 |
formatted_response = format_response(response)
|
39 |
-
|
40 |
-
# Обновляем историю
|
41 |
history.append((message, formatted_response))
|
42 |
|
43 |
return formatted_response, history
|
44 |
|
45 |
def format_response(response):
|
46 |
-
# Упрощенное форматирование ответа
|
47 |
diagnosis = extract_diagnosis(response)
|
48 |
operation = extract_operation(response)
|
49 |
treatment = extract_treatment(response)
|
50 |
-
|
51 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
52 |
|
53 |
def extract_diagnosis(response):
|
54 |
-
# Извлечение диагноза (упрощенно)
|
55 |
return response.split(".")[0].strip() if "." in response else response.strip()
|
56 |
|
57 |
def extract_operation(response):
|
58 |
-
# Упрощенная логика для операции
|
59 |
return "Не требуется"
|
60 |
|
61 |
def extract_treatment(response):
|
62 |
-
# Извлечение лечения
|
63 |
return response.split(".")[-1].strip() if "." in response else "Не указано"
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Состояние для истории
|
77 |
-
state = gr.State(value=[])
|
78 |
-
|
79 |
-
def submit_message(message, history, max_tokens, temperature, top_p):
|
80 |
-
response, updated_history = respond(message, history, max_tokens, temperature, top_p)
|
81 |
-
return response, updated_history, gr.update(value="")
|
82 |
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
submit_message,
|
89 |
-
inputs=[msg, state, max_tokens, temperature, top_p],
|
90 |
-
outputs=[chatbot, state, msg]
|
91 |
-
)
|
92 |
-
|
93 |
-
# Очистка чата
|
94 |
-
clear.click(
|
95 |
-
clear_chat,
|
96 |
-
outputs=[chatbot, state, msg]
|
97 |
-
)
|
98 |
|
99 |
-
|
|
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
-
demo = create_interface()
|
103 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
+
# Загружаем модель GPT-2 локально
|
6 |
model_name = "gpt2"
|
7 |
try:
|
|
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
# Устанавливаем pad_token, если он не задан
|
11 |
+
if tokenizer.pad_token is None:
|
12 |
+
tokenizer.pad_token = tokenizer.eos_token
|
13 |
except Exception as e:
|
14 |
print(f"Ошибка загрузки модели: {e}")
|
15 |
exit(1)
|
16 |
|
17 |
def respond(message, history, max_tokens=512, temperature=0.7, top_p=0.95):
|
|
|
18 |
history = history or []
|
19 |
+
# Формируем историю чата
|
20 |
input_text = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history] + [f"User: {message}"])
|
21 |
|
22 |
# Токенизация
|
23 |
+
try:
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512, padding=True)
|
25 |
+
except Exception as e:
|
26 |
+
return f"Ошибка токенизации: {e}", history
|
27 |
|
28 |
# Генерация ответа
|
29 |
try:
|
|
|
38 |
)
|
39 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
40 |
except Exception as e:
|
41 |
+
return f"Ошибка генерации: {e}", history
|
42 |
|
43 |
# Форматируем ответ
|
44 |
formatted_response = format_response(response)
|
|
|
|
|
45 |
history.append((message, formatted_response))
|
46 |
|
47 |
return formatted_response, history
|
48 |
|
49 |
def format_response(response):
|
|
|
50 |
diagnosis = extract_diagnosis(response)
|
51 |
operation = extract_operation(response)
|
52 |
treatment = extract_treatment(response)
|
|
|
53 |
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
|
54 |
|
55 |
def extract_diagnosis(response):
|
|
|
56 |
return response.split(".")[0].strip() if "." in response else response.strip()
|
57 |
|
58 |
def extract_operation(response):
|
|
|
59 |
return "Не требуется"
|
60 |
|
61 |
def extract_treatment(response):
|
|
|
62 |
return response.split(".")[-1].strip() if "." in response else "Не указано"
|
63 |
|
64 |
+
# Создаем Gradio интерфейс
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
gr.Markdown("## Медицинский чат-бот на базе GPT-2")
|
67 |
+
chatbot = gr.Chatbot(label="Чат")
|
68 |
+
msg = gr.Textbox(label="Ваше сообщение", placeholder="Опишите симптомы...")
|
69 |
+
max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=1, label="Максимальная длина ответа")
|
70 |
+
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Температура")
|
71 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
|
72 |
+
clear = gr.Button("Очистить чат")
|
73 |
+
state = gr.State(value=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def submit_message(message, history, max_tokens, temperature, top_p):
|
76 |
+
response, updated_history = respond(message, history, max_tokens, temperature, top_p)
|
77 |
+
return [(message, response)], updated_history, ""
|
78 |
|
79 |
+
def clear_chat():
|
80 |
+
return [], [], ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
msg.submit(submit_message, [msg, state, max_tokens, temperature, top_p], [chatbot, state, msg])
|
83 |
+
clear.click(clear_chat, outputs=[chatbot, state, msg])
|
84 |
|
85 |
if __name__ == "__main__":
|
|
|
86 |
demo.launch(server_name="0.0.0.0", server_port=7860)
|