DoctorAI / app.py
Xolkin's picture
Update app.py
2f225f8 verified
raw
history blame
3.55 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Загружаем модель GPT-2 локально
model_name = "gpt2"
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Устанавливаем pad_token, если он не задан
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
except Exception as e:
print(f"Ошибка загрузки модели: {e}")
exit(1)
def respond(message, history, max_tokens=512, temperature=0.7, top_p=0.95):
history = history or []
# Формируем историю чата
input_text = "\n".join([f"User: {msg[0]}\nAssistant: {msg[1]}" for msg in history] + [f"User: {message}"])
# Токенизация
try:
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512, padding=True)
except Exception as e:
return f"Ошибка токенизации: {e}", history
# Генерация ответа
try:
outputs = model.generate(
inputs["input_ids"],
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
no_repeat_ngram_size=2
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"Ошибка генерации: {e}", history
# Форматируем ответ
formatted_response = format_response(response)
history.append((message, formatted_response))
return formatted_response, history
def format_response(response):
diagnosis = extract_diagnosis(response)
operation = extract_operation(response)
treatment = extract_treatment(response)
return f"Предварительный диагноз: {diagnosis}\nОперация: {operation}\nЛечение: {treatment}"
def extract_diagnosis(response):
return response.split(".")[0].strip() if "." in response else response.strip()
def extract_operation(response):
return "Не требуется"
def extract_treatment(response):
return response.split(".")[-1].strip() if "." in response else "Не указано"
# Создаем Gradio интерфейс
with gr.Blocks() as demo:
gr.Markdown("## Медицинский чат-бот на базе GPT-2")
chatbot = gr.Chatbot(label="Чат")
msg = gr.Textbox(label="Ваше сообщение", placeholder="Опишите симптомы...")
max_tokens = gr.Slider(minimum=50, maximum=1024, value=512, step=1, label="Максимальная длина ответа")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Температура")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
clear = gr.Button("Очистить чат")
state = gr.State(value=[])
def submit_message(message, history, max_tokens, temperature, top_p):
response, updated_history = respond(message, history, max_tokens, temperature, top_p)
return [(message, response)], updated_history, ""
def clear_chat():
return [], [], ""
msg.submit(submit_message, [msg, state, max_tokens, temperature, top_p], [chatbot, state, msg])
clear.click(clear_chat, outputs=[chatbot, state, msg])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)