XiangpengYang's picture
huggingface dataset
952c41a
import os
import numpy as np
from PIL import Image
from einops import rearrange
from pathlib import Path
import torch
from torch.utils.data import Dataset
from .transform import short_size_scale, random_crop, center_crop, offset_crop
from ..common.image_util import IMAGE_EXTENSION
import cv2
class ImageSequenceDataset(Dataset):
def __init__(
self,
path: str,
layout_mask_dir: str,
layout_mask_order: list,
prompt_ids: torch.Tensor,
prompt: str,
start_sample_frame: int=0,
n_sample_frame: int = 8,
sampling_rate: int = 1,
stride: int = -1, # only used during tuning to sample a long video
image_mode: str = "RGB",
image_size: int = 512,
crop: str = "center",
class_data_root: str = None,
class_prompt_ids: torch.Tensor = None,
offset: dict = {
"left": 0,
"right": 0,
"top": 0,
"bottom": 0
},
**args
):
self.path = path
self.images = self.get_image_list(path)
#
self.layout_mask_dir = layout_mask_dir
self.layout_mask_order = list(layout_mask_order)
layout_mask_dir0 = os.path.join(self.layout_mask_dir,self.layout_mask_order[0])
self.masks_index = self.get_image_list(layout_mask_dir0)
#
self.n_images = len(self.images)
self.offset = offset
self.start_sample_frame = start_sample_frame
if n_sample_frame < 0:
n_sample_frame = len(self.images)
self.n_sample_frame = n_sample_frame
# local sampling rate from the video
self.sampling_rate = sampling_rate
self.sequence_length = (n_sample_frame - 1) * sampling_rate + 1
if self.n_images < self.sequence_length:
raise ValueError(f"self.n_images {self.n_images } < self.sequence_length {self.sequence_length}: Required number of frames {self.sequence_length} larger than total frames in the dataset {self.n_images }")
# During tuning if video is too long, we sample the long video every self.stride globally
self.stride = stride if stride > 0 else (self.n_images+1)
self.video_len = (self.n_images - self.sequence_length) // self.stride + 1
self.image_mode = image_mode
self.image_size = image_size
crop_methods = {
"center": center_crop,
"random": random_crop,
}
if crop not in crop_methods:
raise ValueError
self.crop = crop_methods[crop]
self.prompt = prompt
self.prompt_ids = prompt_ids
# Negative prompt for regularization to avoid overfitting during one-shot tuning
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_images_path = sorted(list(self.class_data_root.iterdir()))
self.num_class_images = len(self.class_images_path)
self.class_prompt_ids = class_prompt_ids
def __len__(self):
max_len = (self.n_images - self.sequence_length) // self.stride + 1
if hasattr(self, 'num_class_images'):
max_len = max(max_len, self.num_class_images)
return max_len
def __getitem__(self, index):
return_batch = {}
frame_indices = self.get_frame_indices(index%self.video_len)
frames = [self.load_frame(i) for i in frame_indices]
frames = self.transform(frames)
layout_ = []
for layout_name in self.layout_mask_order:
frame_indices = self.get_frame_indices(index%self.video_len)
layout_mask_dir = os.path.join(self.layout_mask_dir,layout_name)
mask = [self._read_mask(layout_mask_dir,i) for i in frame_indices]
masks = np.stack(mask)
layout_.append(masks)
layout_ = np.stack(layout_)
merged_masks = []
for i in range(int(self.n_sample_frame)):
merged_mask_frame = np.sum(layout_[:,i,:,:,:], axis=0)
merged_mask_frame = (merged_mask_frame > 0).astype(np.uint8)
merged_masks.append(merged_mask_frame)
masks = rearrange(np.stack(merged_masks), "f c h w -> c f h w")
masks = torch.from_numpy(masks).half()
layouts = rearrange(layout_,"s f c h w -> f s c h w" )
layouts = torch.from_numpy(layouts).half()
return_batch.update(
{
"images": frames,
"masks":masks,
"layouts":layouts,
"prompt_ids": self.prompt_ids,
}
)
if hasattr(self, 'class_data_root'):
class_index = index % (self.num_class_images - self.n_sample_frame)
class_indices = self.get_class_indices(class_index)
frames = [self.load_class_frame(i) for i in class_indices]
return_batch["class_images"] = self.tensorize_frames(frames)
return_batch["class_prompt_ids"] = self.class_prompt_ids
return return_batch
def transform(self, frames):
frames = self.tensorize_frames(frames)
frames = offset_crop(frames, **self.offset)
frames = short_size_scale(frames, size=self.image_size)
frames = self.crop(frames, height=self.image_size, width=self.image_size)
return frames
@staticmethod
def tensorize_frames(frames):
frames = rearrange(np.stack(frames), "f h w c -> c f h w")
return torch.from_numpy(frames).div(255) * 2 - 1
def _read_mask(self, mask_path,index: int):
### read mask by pil
mask_path = os.path.join(mask_path,f"{index:05d}.png")
### read mask by cv2
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
mask = (mask > 0).astype(np.uint8)
# Determine dynamic destination size
height, width = mask.shape
dest_size = (width // 8, height // 8)
# Resize using nearest neighbor interpolation
mask = cv2.resize(mask, dest_size, interpolation=cv2.INTER_NEAREST) #cv2.INTER_CUBIC
mask = mask[np.newaxis, ...]
return mask
def load_frame(self, index):
image_path = os.path.join(self.path, self.images[index])
return Image.open(image_path).convert(self.image_mode)
def load_class_frame(self, index):
image_path = self.class_images_path[index]
return Image.open(image_path).convert(self.image_mode)
def get_frame_indices(self, index):
if self.start_sample_frame is not None:
frame_start = self.start_sample_frame + self.stride * index
else:
frame_start = self.stride * index
return (frame_start + i * self.sampling_rate for i in range(self.n_sample_frame))
def get_class_indices(self, index):
frame_start = index
return (frame_start + i for i in range(self.n_sample_frame))
@staticmethod
def get_image_list(path):
images = []
for file in sorted(os.listdir(path)):
if file.endswith(IMAGE_EXTENSION):
images.append(file)
return images