File size: 7,203 Bytes
5602c9a
952c41a
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952c41a
 
 
5602c9a
 
952c41a
5602c9a
 
952c41a
5602c9a
 
 
952c41a
 
 
 
5602c9a
 
 
 
 
 
 
952c41a
5602c9a
952c41a
 
 
 
 
5602c9a
952c41a
 
5602c9a
952c41a
5602c9a
 
 
 
952c41a
5602c9a
952c41a
5602c9a
 
 
 
952c41a
5602c9a
952c41a
 
5602c9a
 
 
 
 
 
 
 
 
952c41a
5602c9a
 
 
 
952c41a
 
 
 
 
 
5602c9a
 
 
 
952c41a
5602c9a
 
952c41a
5602c9a
 
 
 
952c41a
5602c9a
 
 
 
952c41a
 
 
 
 
5602c9a
952c41a
5602c9a
 
952c41a
 
5602c9a
 
 
 
952c41a
5602c9a
 
952c41a
 
5602c9a
952c41a
 
5602c9a
952c41a
 
 
 
 
 
 
 
 
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
952c41a
 
 
 
 
 
5602c9a
 
952c41a
5602c9a
 
952c41a
 
5602c9a
952c41a
5602c9a
 
952c41a
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952c41a
5602c9a
 
 
 
 
 
 
952c41a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os

import numpy as np
from PIL import Image
from einops import rearrange
from pathlib import Path

import torch
from torch.utils.data import Dataset

from .transform import short_size_scale, random_crop, center_crop, offset_crop
from ..common.image_util import IMAGE_EXTENSION
import cv2

class ImageSequenceDataset(Dataset):
    def __init__(
        self,
        path: str,
        layout_mask_dir: str,
        layout_mask_order: list,
        prompt_ids: torch.Tensor,
        prompt: str,
        start_sample_frame: int=0,
        n_sample_frame: int = 8,
        sampling_rate: int = 1,
        stride: int = -1, # only used during tuning to sample a long video
        image_mode: str = "RGB",
        image_size: int = 512,
        crop: str = "center",
                
        class_data_root: str = None,
        class_prompt_ids: torch.Tensor = None,
        
        offset: dict = {
            "left": 0,
            "right": 0,
            "top": 0,
            "bottom": 0
        },
        **args
        
    ):
        self.path = path
        self.images = self.get_image_list(path)
        #
        self.layout_mask_dir = layout_mask_dir
        self.layout_mask_order = list(layout_mask_order)
        
        layout_mask_dir0 = os.path.join(self.layout_mask_dir,self.layout_mask_order[0])
        self.masks_index = self.get_image_list(layout_mask_dir0)

        #
        self.n_images = len(self.images)
        self.offset = offset
        self.start_sample_frame = start_sample_frame
        if n_sample_frame < 0:
            n_sample_frame = len(self.images)        
        self.n_sample_frame = n_sample_frame
        # local sampling rate from the video
        self.sampling_rate = sampling_rate

        self.sequence_length = (n_sample_frame - 1) * sampling_rate + 1
        if self.n_images < self.sequence_length:
            raise ValueError(f"self.n_images  {self.n_images } < self.sequence_length {self.sequence_length}: Required number of frames {self.sequence_length} larger than total frames in the dataset {self.n_images }")
        
        # During tuning if video is too long, we sample the long video every self.stride globally
        self.stride = stride if stride > 0 else (self.n_images+1)
        self.video_len = (self.n_images - self.sequence_length) // self.stride + 1

        self.image_mode = image_mode
        self.image_size = image_size
        crop_methods = {
            "center": center_crop,
            "random": random_crop,
        }
        if crop not in crop_methods:
            raise ValueError
        self.crop = crop_methods[crop]

        self.prompt = prompt
        self.prompt_ids = prompt_ids
        # Negative prompt for regularization to avoid overfitting during one-shot tuning
        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_images_path = sorted(list(self.class_data_root.iterdir()))
            self.num_class_images = len(self.class_images_path)
            self.class_prompt_ids = class_prompt_ids
        
        
    def __len__(self):
        max_len = (self.n_images - self.sequence_length) // self.stride + 1
        
        if hasattr(self, 'num_class_images'):
            max_len = max(max_len, self.num_class_images)
        
        return max_len

    def __getitem__(self, index):
        return_batch = {}
        frame_indices = self.get_frame_indices(index%self.video_len)
        frames = [self.load_frame(i) for i in frame_indices]
        frames = self.transform(frames)
        
        layout_ = []
        for layout_name in self.layout_mask_order:
            frame_indices = self.get_frame_indices(index%self.video_len)
            layout_mask_dir = os.path.join(self.layout_mask_dir,layout_name)
            mask = [self._read_mask(layout_mask_dir,i) for i in frame_indices]
            masks = np.stack(mask)
            layout_.append(masks)
        layout_ = np.stack(layout_)
        merged_masks = []
        for i in range(int(self.n_sample_frame)):
            merged_mask_frame = np.sum(layout_[:,i,:,:,:], axis=0)
            merged_mask_frame = (merged_mask_frame > 0).astype(np.uint8)    
            merged_masks.append(merged_mask_frame)
        masks = rearrange(np.stack(merged_masks), "f c h w -> c f h w")
        masks = torch.from_numpy(masks).half()

        layouts = rearrange(layout_,"s f c h w -> f s c h w" )
        layouts = torch.from_numpy(layouts).half()

        return_batch.update(
            {
            "images": frames,
            "masks":masks,
            "layouts":layouts,
            "prompt_ids": self.prompt_ids,
            }
        )

        if hasattr(self, 'class_data_root'):
            class_index = index % (self.num_class_images - self.n_sample_frame)
            class_indices = self.get_class_indices(class_index)           
            frames = [self.load_class_frame(i) for i in class_indices]
            return_batch["class_images"] = self.tensorize_frames(frames)
            return_batch["class_prompt_ids"] = self.class_prompt_ids
        return return_batch
    
    def transform(self, frames):
        frames = self.tensorize_frames(frames)
        frames = offset_crop(frames, **self.offset)
        frames = short_size_scale(frames, size=self.image_size)
        frames = self.crop(frames, height=self.image_size, width=self.image_size)
        return frames

    @staticmethod
    def tensorize_frames(frames):
        frames = rearrange(np.stack(frames), "f h w c -> c f h w")
        return torch.from_numpy(frames).div(255) * 2 - 1

    def _read_mask(self, mask_path,index: int):
        ### read mask by pil

        mask_path = os.path.join(mask_path,f"{index:05d}.png")

        ### read mask by cv2
        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
        mask = (mask > 0).astype(np.uint8)
        # Determine dynamic destination size
        height, width = mask.shape
        dest_size = (width // 8, height // 8)
        # Resize using nearest neighbor interpolation
        mask = cv2.resize(mask, dest_size, interpolation=cv2.INTER_NEAREST) #cv2.INTER_CUBIC
        mask = mask[np.newaxis, ...]

        return mask


    def load_frame(self, index):
        image_path = os.path.join(self.path, self.images[index])
        return Image.open(image_path).convert(self.image_mode)

    def load_class_frame(self, index):
        image_path = self.class_images_path[index]
        return Image.open(image_path).convert(self.image_mode)

    def get_frame_indices(self, index):
        if self.start_sample_frame is not None:
            frame_start = self.start_sample_frame + self.stride * index
        else:
            frame_start = self.stride * index
        return (frame_start + i * self.sampling_rate for i in range(self.n_sample_frame))

    def get_class_indices(self, index):
        frame_start = index
        return (frame_start + i  for i in range(self.n_sample_frame))

    @staticmethod
    def get_image_list(path):
        images = []
        for file in sorted(os.listdir(path)):
            if file.endswith(IMAGE_EXTENSION):
                images.append(file)
        return images