Spaces:
Configuration error
Configuration error
import numpy as np | |
import cv2 | |
import os | |
import torch | |
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts') | |
def get_control(type): | |
if type == 'canny': | |
from .canny import CannyDetector | |
apply_control = CannyDetector() | |
elif type == 'openpose': | |
from .openpose import OpenposeDetector | |
apply_control = OpenposeDetector() | |
elif type == 'dwpose': | |
from .dwpose import DWposeDetector | |
apply_control = DWposeDetector() | |
elif type == 'depth' or type == 'normal': | |
from .midas import MidasDetector | |
apply_control = MidasDetector() | |
elif type == 'depth_zoe': | |
from .zoe import ZoeDetector | |
apply_control = ZoeDetector() | |
elif type == 'hed': | |
from .hed import HEDdetector | |
apply_control = HEDdetector() | |
elif type == 'scribble': | |
apply_control = None | |
elif type == 'seg': | |
from .uniformer import UniformerDetector | |
apply_control = UniformerDetector() | |
elif type == 'mlsd': | |
from .mlsd import MLSDdetector | |
apply_control = MLSDdetector() | |
else: | |
raise TypeError(type) | |
return apply_control | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def resize_image(input_image, resolution): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / min(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) | |
return img | |