Spaces:
Configuration error
Configuration error
File size: 2,025 Bytes
5602c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
import numpy as np
import cv2
import os
import torch
annotator_ckpts_path = os.path.join(os.path.dirname(__file__), 'ckpts')
def get_control(type):
if type == 'canny':
from .canny import CannyDetector
apply_control = CannyDetector()
elif type == 'openpose':
from .openpose import OpenposeDetector
apply_control = OpenposeDetector()
elif type == 'dwpose':
from .dwpose import DWposeDetector
apply_control = DWposeDetector()
elif type == 'depth' or type == 'normal':
from .midas import MidasDetector
apply_control = MidasDetector()
elif type == 'depth_zoe':
from .zoe import ZoeDetector
apply_control = ZoeDetector()
elif type == 'hed':
from .hed import HEDdetector
apply_control = HEDdetector()
elif type == 'scribble':
apply_control = None
elif type == 'seg':
from .uniformer import UniformerDetector
apply_control = UniformerDetector()
elif type == 'mlsd':
from .mlsd import MLSDdetector
apply_control = MLSDdetector()
else:
raise TypeError(type)
return apply_control
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
|