Spaces:
Configuration error
Configuration error
''' | |
utils code for image visualization | |
''' | |
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
from PIL import Image | |
import cv2 | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
import datetime | |
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)): | |
h, w, c = image.shape | |
offset = int(h * .2) | |
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255 | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
# font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size) | |
img[:h] = image | |
textsize = cv2.getTextSize(text, font, 1, 2)[0] | |
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2 | |
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2) | |
return img | |
def view_images(images, num_rows=1, offset_ratio=0.02, save_path=None): | |
if type(images) is list: | |
num_empty = len(images) % num_rows | |
elif images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] | |
num_empty = 0 | |
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255 | |
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty | |
num_items = len(images) | |
h, w, c = images[0].shape | |
offset = int(h * offset_ratio) | |
num_cols = num_items // num_rows | |
image_ = np.ones((h * num_rows + offset * (num_rows - 1), | |
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255 | |
for i in range(num_rows): | |
for j in range(num_cols): | |
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[ | |
i * num_cols + j] | |
if save_path is not None: | |
pil_img = Image.fromarray(image_) | |
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") | |
pil_img.save(f'{save_path}') | |
#pil_img.save(f'{save_path}/{now}.png') | |
# display(pil_img) | |
def register_attention_control_p2p_deprecated(model, controller): | |
"Original code from prompt to prompt" | |
def ca_forward(self, place_in_unet): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
# def forward(x, encoder_hidden_states=None, attention_mask=None): | |
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = self.to_q(hidden_states) | |
query = self.head_to_batch_dim(query) | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
key = self.to_k(encoder_hidden_states) | |
value = self.to_v(encoder_hidden_states) | |
key = self.head_to_batch_dim(key) | |
value = self.head_to_batch_dim(value) | |
attention_probs = self.get_attention_scores(query, key, attention_mask) # [16, 4096, 4096] | |
attention_probs = controller(attention_probs, is_cross, place_in_unet) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = self.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = self.to_out[0](hidden_states) | |
# dropout | |
hidden_states = self.to_out[1](hidden_states) | |
return hidden_states | |
return forward | |
class DummyController: | |
def __call__(self, *args): | |
return args[0] | |
def __init__(self): | |
self.num_att_layers = 0 | |
if controller is None: | |
controller = DummyController() | |
def register_recr(net_, count, place_in_unet): | |
if net_.__class__.__name__ == 'CrossAttention': | |
net_.forward = ca_forward(net_, place_in_unet) | |
return count + 1 | |
elif hasattr(net_, 'children'): | |
for net__ in net_.children(): | |
count = register_recr(net__, count, place_in_unet) | |
return count | |
cross_att_count = 0 | |
sub_nets = model.unet.named_children() | |
for net in sub_nets: | |
if "down" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "down") | |
elif "up" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "up") | |
elif "mid" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "mid") | |
controller.num_att_layers = cross_att_count | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, | |
word_inds: Optional[torch.Tensor]=None): | |
# Edit the alpha map during attention map editing | |
if type(bounds) is float: | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
import omegaconf | |
def get_time_words_attention_alpha(prompts, num_steps, | |
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]], | |
tokenizer, max_num_words=77): | |
# Not understand | |
if (type(cross_replace_steps) is not dict) and \ | |
(type(cross_replace_steps) is not omegaconf.dictconfig.DictConfig): | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) | |
return alpha_time_words | |