File size: 7,843 Bytes
5602c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
'''
utils code for image visualization
'''


# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from PIL import Image
import cv2
from typing import Optional, Union, Tuple, List, Callable, Dict

import datetime


def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
    h, w, c = image.shape
    offset = int(h * .2)
    img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
    font = cv2.FONT_HERSHEY_SIMPLEX
    # font = ImageFont.truetype("/usr/share/fonts/truetype/noto/NotoMono-Regular.ttf", font_size)
    img[:h] = image
    textsize = cv2.getTextSize(text, font, 1, 2)[0]
    text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
    cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
    return img


def view_images(images, num_rows=1, offset_ratio=0.02, save_path=None):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0

    empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
    images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
    num_items = len(images)

    h, w, c = images[0].shape
    offset = int(h * offset_ratio)
    num_cols = num_items // num_rows
    image_ = np.ones((h * num_rows + offset * (num_rows - 1),
                      w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
    for i in range(num_rows):
        for j in range(num_cols):
            image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
                i * num_cols + j]
    
    if save_path is not None:
        pil_img = Image.fromarray(image_)
        # now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
        pil_img.save(f'{save_path}')
        #pil_img.save(f'{save_path}/{now}.png')
    # display(pil_img)



def register_attention_control_p2p_deprecated(model, controller):
    "Original code from prompt to prompt"
    def ca_forward(self, place_in_unet):
        to_out = self.to_out
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out

        # def forward(x, encoder_hidden_states=None, attention_mask=None):
        def forward(hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
            batch_size, sequence_length, _ = hidden_states.shape
            attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)

            query = self.to_q(hidden_states)
            query = self.head_to_batch_dim(query)

            is_cross = encoder_hidden_states is not None
            encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
            key = self.to_k(encoder_hidden_states)
            value = self.to_v(encoder_hidden_states)
            key = self.head_to_batch_dim(key)
            value = self.head_to_batch_dim(value)

            attention_probs = self.get_attention_scores(query, key, attention_mask) # [16, 4096, 4096]
            attention_probs = controller(attention_probs, is_cross, place_in_unet)
            hidden_states = torch.bmm(attention_probs, value)
            hidden_states = self.batch_to_head_dim(hidden_states)

            # linear proj
            hidden_states = self.to_out[0](hidden_states)
            # dropout
            hidden_states = self.to_out[1](hidden_states)

            return hidden_states

        return forward

    class DummyController:

        def __call__(self, *args):
            return args[0]

        def __init__(self):
            self.num_att_layers = 0

    if controller is None:
        controller = DummyController()

    def register_recr(net_, count, place_in_unet):
        if net_.__class__.__name__ == 'CrossAttention':
            net_.forward = ca_forward(net_, place_in_unet)
            return count + 1
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                count = register_recr(net__, count, place_in_unet)
        return count

    cross_att_count = 0
    sub_nets = model.unet.named_children()
    for net in sub_nets:
        if "down" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "up" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "mid" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")

    controller.num_att_layers = cross_att_count

    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
                           word_inds: Optional[torch.Tensor]=None):
    # Edit the alpha map during attention map editing
    if type(bounds) is float:
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[: start, prompt_ind, word_inds] = 0
    alpha[start: end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha

import omegaconf
def get_time_words_attention_alpha(prompts, num_steps,
                                   cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
                                   tokenizer, max_num_words=77):
    # Not understand
    if (type(cross_replace_steps) is not dict) and \
        (type(cross_replace_steps) is not omegaconf.dictconfig.DictConfig):
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0., 1.)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    for i in range(len(prompts) - 1):
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
                                                  i)
    for key, item in cross_replace_steps.items():
        if key != "default_":
             inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
             for i, ind in enumerate(inds):
                 if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
    return alpha_time_words