VideoGrain / annotator /dwpose /wholebody.py
XiangpengYang's picture
first commit
5602c9a
raw
history blame
5.42 kB
import cv2
import numpy as np
import onnxruntime as ort
from .onnxdet import inference_detector
from .onnxpose import inference_pose
class Wholebody:
def __init__(self):
device = 'cuda:0'
providers = ['CPUExecutionProvider'
] if device == 'cpu' else ['CUDAExecutionProvider']
onnx_det = 'annotator/ckpts/yolox_l.onnx'
onnx_pose = 'annotator/ckpts/dw-ll_ucoco_384.onnx'
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg):
det_result = inference_detector(self.session_det, oriImg)
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[
..., :2], keypoints_info[..., 2]
return keypoints, scores
# # Copyright (c) OpenMMLab. All rights reserved.
# import numpy as np
# from . import util
# import cv2
# import mmcv
# import torch
# import matplotlib.pyplot as plt
# from mmpose.apis import inference_topdown
# from mmpose.apis import init_model as init_pose_estimator
# from mmpose.evaluation.functional import nms
# from mmpose.utils import adapt_mmdet_pipeline
# from mmpose.structures import merge_data_samples
# from mmdet.apis import inference_detector, init_detector
# class Wholebody:
# def __init__(self):
# device = 'cuda:0'
# det_config = 'annotator/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py'
# det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
# pose_config = 'annotator/dwpose/dwpose_config/dwpose-l_384x288.py'
# pose_ckpt = 'annotator/ckpts/dw-ll_ucoco_384.pth'
# # build detector
# self.detector = init_detector(det_config, det_ckpt, device=device)
# self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
# # build pose estimator
# self.pose_estimator = init_pose_estimator(
# pose_config,
# pose_ckpt,
# device=device)
# def __call__(self, oriImg):
# # predict bbox
# det_result = inference_detector(self.detector, oriImg)
# pred_instance = det_result.pred_instances.cpu().numpy()
# bboxes = np.concatenate(
# (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
# bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
# pred_instance.scores > 0.3)]
# # # max value
# # if len(bboxes) > 0:
# # bboxes = bboxes[0].reshape(1,-1)
# bboxes = bboxes[nms(bboxes, 0.3), :4]
# # predict keypoints
# if len(bboxes) == 0:
# pose_results = inference_topdown(self.pose_estimator, oriImg)
# else:
# pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
# preds = merge_data_samples(pose_results)
# preds = preds.pred_instances
# # preds = pose_results[0].pred_instances
# keypoints = preds.get('transformed_keypoints',
# preds.keypoints)
# if 'keypoint_scores' in preds:
# scores = preds.keypoint_scores
# else:
# scores = np.ones(keypoints.shape[:-1])
# if 'keypoints_visible' in preds:
# visible = preds.keypoints_visible
# else:
# visible = np.ones(keypoints.shape[:-1])
# keypoints_info = np.concatenate(
# (keypoints, scores[..., None], visible[..., None]),
# axis=-1)
# # compute neck joint
# neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# # neck score when visualizing pred
# neck[:, 2:4] = np.logical_and(
# keypoints_info[:, 5, 2:4] > 0.3,
# keypoints_info[:, 6, 2:4] > 0.3).astype(int)
# new_keypoints_info = np.insert(
# keypoints_info, 17, neck, axis=1)
# mmpose_idx = [
# 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
# ]
# openpose_idx = [
# 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
# ]
# new_keypoints_info[:, openpose_idx] = \
# new_keypoints_info[:, mmpose_idx]
# keypoints_info = new_keypoints_info
# keypoints, scores, visible = keypoints_info[
# ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
# return keypoints, scores