import cv2 import numpy as np import onnxruntime as ort from .onnxdet import inference_detector from .onnxpose import inference_pose class Wholebody: def __init__(self): device = 'cuda:0' providers = ['CPUExecutionProvider' ] if device == 'cpu' else ['CUDAExecutionProvider'] onnx_det = 'annotator/ckpts/yolox_l.onnx' onnx_pose = 'annotator/ckpts/dw-ll_ucoco_384.onnx' self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers) self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers) def __call__(self, oriImg): det_result = inference_detector(self.session_det, oriImg) keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) keypoints_info = np.concatenate( (keypoints, scores[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:4] = np.logical_and( keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int) new_keypoints_info = np.insert( keypoints_info, 17, neck, axis=1) mmpose_idx = [ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 ] openpose_idx = [ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 ] new_keypoints_info[:, openpose_idx] = \ new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info keypoints, scores = keypoints_info[ ..., :2], keypoints_info[..., 2] return keypoints, scores # # Copyright (c) OpenMMLab. All rights reserved. # import numpy as np # from . import util # import cv2 # import mmcv # import torch # import matplotlib.pyplot as plt # from mmpose.apis import inference_topdown # from mmpose.apis import init_model as init_pose_estimator # from mmpose.evaluation.functional import nms # from mmpose.utils import adapt_mmdet_pipeline # from mmpose.structures import merge_data_samples # from mmdet.apis import inference_detector, init_detector # class Wholebody: # def __init__(self): # device = 'cuda:0' # det_config = 'annotator/dwpose/yolox_config/yolox_l_8xb8-300e_coco.py' # det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' # pose_config = 'annotator/dwpose/dwpose_config/dwpose-l_384x288.py' # pose_ckpt = 'annotator/ckpts/dw-ll_ucoco_384.pth' # # build detector # self.detector = init_detector(det_config, det_ckpt, device=device) # self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg) # # build pose estimator # self.pose_estimator = init_pose_estimator( # pose_config, # pose_ckpt, # device=device) # def __call__(self, oriImg): # # predict bbox # det_result = inference_detector(self.detector, oriImg) # pred_instance = det_result.pred_instances.cpu().numpy() # bboxes = np.concatenate( # (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) # bboxes = bboxes[np.logical_and(pred_instance.labels == 0, # pred_instance.scores > 0.3)] # # # max value # # if len(bboxes) > 0: # # bboxes = bboxes[0].reshape(1,-1) # bboxes = bboxes[nms(bboxes, 0.3), :4] # # predict keypoints # if len(bboxes) == 0: # pose_results = inference_topdown(self.pose_estimator, oriImg) # else: # pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes) # preds = merge_data_samples(pose_results) # preds = preds.pred_instances # # preds = pose_results[0].pred_instances # keypoints = preds.get('transformed_keypoints', # preds.keypoints) # if 'keypoint_scores' in preds: # scores = preds.keypoint_scores # else: # scores = np.ones(keypoints.shape[:-1]) # if 'keypoints_visible' in preds: # visible = preds.keypoints_visible # else: # visible = np.ones(keypoints.shape[:-1]) # keypoints_info = np.concatenate( # (keypoints, scores[..., None], visible[..., None]), # axis=-1) # # compute neck joint # neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # # neck score when visualizing pred # neck[:, 2:4] = np.logical_and( # keypoints_info[:, 5, 2:4] > 0.3, # keypoints_info[:, 6, 2:4] > 0.3).astype(int) # new_keypoints_info = np.insert( # keypoints_info, 17, neck, axis=1) # mmpose_idx = [ # 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 # ] # openpose_idx = [ # 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 # ] # new_keypoints_info[:, openpose_idx] = \ # new_keypoints_info[:, mmpose_idx] # keypoints_info = new_keypoints_info # keypoints, scores, visible = keypoints_info[ # ..., :2], keypoints_info[..., 2], keypoints_info[..., 3] # return keypoints, scores