VideoGrain / README.md
XiangpengYang's picture
update all
a043943
|
raw
history blame
1.28 kB

πŸ›‘ Setup Environment

Our method is tested using cuda12.1, fp16 of accelerator and xformers on a single L40.

# Step 1: Create and activate Conda environment
conda create -n st-modulator python==3.10 
conda activate st-modulator

# Step 2: Install PyTorch, CUDA and Xformers
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install --pre -U xformers==0.0.27
# Step 3: Install additional dependencies with pip
pip install -r requirements.txt

xformers is recommended to save memory and running time.

You may download all data and checkpoints using the following bash command

bash download_all.sh

πŸ”₯ ST-Modulator Editing

You could reproduce multi-grained editing results in our teaser by running:

bash test.sh 
#or accelerate launch test.py --config config/run_two_man.yaml
The result is saved at `./result` . (Click for directory structure)
result
β”œβ”€β”€ run_two_man
β”‚   β”œβ”€β”€ infer_samples
β”‚   β”œβ”€β”€ sample
β”‚           β”œβ”€β”€ step_0         # result image folder
β”‚           β”œβ”€β”€ step_0.mp4       # result video
β”‚           β”œβ”€β”€ source_video.mp4    # the input video