Spaces:
Running
Running
| from transformers.trainer_utils import get_last_checkpoint as glc | |
| from transformers import TrainingArguments | |
| import os | |
| from utils import re_findall | |
| import logging | |
| import sys | |
| from datasets import load_dataset | |
| import re | |
| import gc | |
| from time import time_ns | |
| import random | |
| import numpy as np | |
| import torch | |
| from typing import Optional | |
| from dataclasses import dataclass, field | |
| from enum import Enum | |
| CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION'] | |
| ACTION_OPTIONS = ['skip', 'mute', 'full'] | |
| CATGEGORY_OPTIONS = { | |
| 'SPONSOR': 'Sponsor', | |
| 'SELFPROMO': 'Self/unpaid promo', | |
| 'INTERACTION': 'Interaction reminder', | |
| } | |
| START_SEGMENT_TEMPLATE = 'START_{}_TOKEN' | |
| END_SEGMENT_TEMPLATE = 'END_{}_TOKEN' | |
| class CustomTokens(Enum): | |
| EXTRACT_SEGMENTS_PREFIX = 'EXTRACT_SEGMENTS: ' | |
| # Preprocessing tokens | |
| URL = 'URL_TOKEN' | |
| HYPHENATED_URL = 'HYPHENATED_URL_TOKEN' | |
| NUMBER_PERCENTAGE = 'NUMBER_PERCENTAGE_TOKEN' | |
| NUMBER = 'NUMBER_TOKEN' | |
| SHORT_HYPHENATED = 'SHORT_HYPHENATED_TOKEN' | |
| LONG_WORD = 'LONG_WORD_TOKEN' | |
| # Custom YouTube tokens | |
| MUSIC = '[Music]' | |
| APPLAUSE = '[Applause]' | |
| LAUGHTER = '[Laughter]' | |
| PROFANITY = 'PROFANITY_TOKEN' | |
| # Segment tokens | |
| NO_SEGMENT = 'NO_SEGMENT_TOKEN' | |
| START_SPONSOR = START_SEGMENT_TEMPLATE.format('SPONSOR') | |
| END_SPONSOR = END_SEGMENT_TEMPLATE.format('SPONSOR') | |
| START_SELFPROMO = START_SEGMENT_TEMPLATE.format('SELFPROMO') | |
| END_SELFPROMO = END_SEGMENT_TEMPLATE.format('SELFPROMO') | |
| START_INTERACTION = START_SEGMENT_TEMPLATE.format('INTERACTION') | |
| END_INTERACTION = END_SEGMENT_TEMPLATE.format('INTERACTION') | |
| BETWEEN_SEGMENTS = 'BETWEEN_SEGMENTS_TOKEN' | |
| def custom_tokens(cls): | |
| return [e.value for e in cls] | |
| def add_custom_tokens(cls, tokenizer): | |
| tokenizer.add_tokens(cls.custom_tokens()) | |
| _SEGMENT_START = START_SEGMENT_TEMPLATE.format(r'(?P<category>\w+)') | |
| _SEGMENT_END = END_SEGMENT_TEMPLATE.format(r'\w+') | |
| SEGMENT_MATCH_RE = fr'{_SEGMENT_START}\s*(?P<text>.*?)\s*(?:{_SEGMENT_END}|$)' | |
| def extract_sponsor_matches(text): | |
| if CustomTokens.NO_SEGMENT.value in text: | |
| return [] | |
| return re_findall(SEGMENT_MATCH_RE, text) | |
| class DatasetArguments: | |
| data_dir: Optional[str] = field( | |
| default='data', | |
| metadata={ | |
| 'help': 'The directory which stores train, test and/or validation data.' | |
| }, | |
| ) | |
| processed_file: Optional[str] = field( | |
| default='segments.json', | |
| metadata={ | |
| 'help': 'Processed data file' | |
| }, | |
| ) | |
| processed_database: Optional[str] = field( | |
| default='processed_database.json', | |
| metadata={ | |
| 'help': 'Processed database file' | |
| }, | |
| ) | |
| dataset_cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| 'help': 'Where to store the cached datasets' | |
| }, | |
| ) | |
| class OutputArguments: | |
| output_dir: str = field( | |
| default='out', | |
| metadata={ | |
| 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| }, | |
| ) | |
| checkpoint: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| 'help': 'Choose the checkpoint/model to train from or test with. Defaults to the latest checkpoint found in `output_dir`.' | |
| }, | |
| ) | |
| models_dir: str = field( | |
| default='models', | |
| metadata={ | |
| 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| }, | |
| ) | |
| # classifier_dir: str = field( | |
| # default='out', | |
| # metadata={ | |
| # 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.' | |
| # }, | |
| # ) | |
| def seed_factory(): | |
| return time_ns() % (2**32 - 1) | |
| class GeneralArguments: | |
| seed: Optional[int] = field(default_factory=seed_factory, metadata={ | |
| 'help': 'Set seed for deterministic training and testing. By default, it uses the current time (results in essentially random results).' | |
| }) | |
| no_cuda: bool = field(default=False, metadata={ | |
| 'help': 'Do not use CUDA even when it is available'}) | |
| def __post_init__(self): | |
| random.seed(self.seed) | |
| np.random.seed(self.seed) | |
| torch.manual_seed(self.seed) | |
| torch.cuda.manual_seed_all(self.seed) | |
| def seconds_to_time(seconds, remove_leading_zeroes=False): | |
| fractional = round(seconds % 1, 3) | |
| fractional = '' if fractional == 0 else str(fractional)[1:] | |
| h, remainder = divmod(abs(int(seconds)), 3600) | |
| m, s = divmod(remainder, 60) | |
| hms = f'{h:02}:{m:02}:{s:02}' | |
| if remove_leading_zeroes: | |
| hms = re.sub(r'^0(?:0:0?)?', '', hms) | |
| return f"{'-' if seconds < 0 else ''}{hms}{fractional}" | |
| def reset(): | |
| torch.clear_autocast_cache() | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| print(torch.cuda.memory_summary(device=None, abbreviated=False)) | |
| def load_datasets(dataset_args): | |
| print('Reading datasets') | |
| data_files = {} | |
| if dataset_args.train_file is not None: | |
| data_files['train'] = os.path.join( | |
| dataset_args.data_dir, dataset_args.train_file) | |
| if dataset_args.validation_file is not None: | |
| data_files['validation'] = os.path.join( | |
| dataset_args.data_dir, dataset_args.validation_file) | |
| if dataset_args.test_file is not None: | |
| data_files['test'] = os.path.join( | |
| dataset_args.data_dir, dataset_args.test_file) | |
| return load_dataset('json', data_files=data_files, cache_dir=dataset_args.dataset_cache_dir) | |
| class CustomTrainingArguments(OutputArguments, TrainingArguments): | |
| seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed'] | |
| num_train_epochs: float = field( | |
| default=1, metadata={'help': 'Total number of training epochs to perform.'}) | |
| save_steps: int = field(default=5000, metadata={ | |
| 'help': 'Save checkpoint every X updates steps.'}) | |
| eval_steps: int = field(default=5000, metadata={ | |
| 'help': 'Run an evaluation every X steps.'}) | |
| logging_steps: int = field(default=5000, metadata={ | |
| 'help': 'Log every X updates steps.'}) | |
| # do_eval: bool = field(default=False, metadata={ | |
| # 'help': 'Whether to run eval on the dev set.'}) | |
| # do_predict: bool = field(default=False, metadata={ | |
| # 'help': 'Whether to run predictions on the test set.'}) | |
| per_device_train_batch_size: int = field( | |
| default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'} | |
| ) | |
| per_device_eval_batch_size: int = field( | |
| default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'} | |
| ) | |
| # report_to: Optional[List[str]] = field( | |
| # default=None, metadata={"help": "The list of integrations to report the results and logs to."} | |
| # ) | |
| evaluation_strategy: str = field( | |
| default='steps', | |
| metadata={ | |
| 'help': 'The evaluation strategy to use.', | |
| 'choices': ['no', 'steps', 'epoch'] | |
| }, | |
| ) | |
| # evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`): | |
| # The evaluation strategy to adopt during training. Possible values are: | |
| # * :obj:`"no"`: No evaluation is done during training. | |
| # * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. | |
| # * :obj:`"epoch"`: Evaluation is done at the end of each epoch. | |
| logging.basicConfig() | |
| logger = logging.getLogger(__name__) | |
| # Setup logging | |
| logging.basicConfig( | |
| format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
| datefmt='%m/%d/%Y %H:%M:%S', | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| def get_last_checkpoint(training_args): | |
| last_checkpoint = None | |
| if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir: | |
| last_checkpoint = glc(training_args.output_dir) | |
| if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | |
| raise ValueError( | |
| f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.' | |
| ) | |
| elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | |
| logger.info( | |
| f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' | |
| ) | |
| return last_checkpoint | |
| def train_from_checkpoint(trainer, last_checkpoint, training_args): | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| elif last_checkpoint is not None: | |
| checkpoint = last_checkpoint | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| trainer.save_model() # Saves the tokenizer too for easy upload | |
| return train_result | |