Spaces:
Running
Running
File size: 9,219 Bytes
36f7534 bb58e90 5fbdd3c 36f7534 1286fe5 4f1ee08 fca2a61 4f1ee08 bb58e90 5fbdd3c 90d1f68 4f1ee08 5fbdd3c bb58e90 4f1ee08 5fbdd3c 36f7534 5fbdd3c 09cabec 5fbdd3c bb58e90 5fbdd3c 36f7534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from transformers.trainer_utils import get_last_checkpoint as glc
from transformers import TrainingArguments
import os
from utils import re_findall
import logging
import sys
from datasets import load_dataset
import re
import gc
from time import time_ns
import random
import numpy as np
import torch
from typing import Optional
from dataclasses import dataclass, field
from enum import Enum
CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']
ACTION_OPTIONS = ['skip', 'mute', 'full']
CATGEGORY_OPTIONS = {
'SPONSOR': 'Sponsor',
'SELFPROMO': 'Self/unpaid promo',
'INTERACTION': 'Interaction reminder',
}
START_SEGMENT_TEMPLATE = 'START_{}_TOKEN'
END_SEGMENT_TEMPLATE = 'END_{}_TOKEN'
class CustomTokens(Enum):
EXTRACT_SEGMENTS_PREFIX = 'EXTRACT_SEGMENTS: '
# Preprocessing tokens
URL = 'URL_TOKEN'
HYPHENATED_URL = 'HYPHENATED_URL_TOKEN'
NUMBER_PERCENTAGE = 'NUMBER_PERCENTAGE_TOKEN'
NUMBER = 'NUMBER_TOKEN'
SHORT_HYPHENATED = 'SHORT_HYPHENATED_TOKEN'
LONG_WORD = 'LONG_WORD_TOKEN'
# Custom YouTube tokens
MUSIC = '[Music]'
APPLAUSE = '[Applause]'
LAUGHTER = '[Laughter]'
PROFANITY = 'PROFANITY_TOKEN'
# Segment tokens
NO_SEGMENT = 'NO_SEGMENT_TOKEN'
START_SPONSOR = START_SEGMENT_TEMPLATE.format('SPONSOR')
END_SPONSOR = END_SEGMENT_TEMPLATE.format('SPONSOR')
START_SELFPROMO = START_SEGMENT_TEMPLATE.format('SELFPROMO')
END_SELFPROMO = END_SEGMENT_TEMPLATE.format('SELFPROMO')
START_INTERACTION = START_SEGMENT_TEMPLATE.format('INTERACTION')
END_INTERACTION = END_SEGMENT_TEMPLATE.format('INTERACTION')
BETWEEN_SEGMENTS = 'BETWEEN_SEGMENTS_TOKEN'
@classmethod
def custom_tokens(cls):
return [e.value for e in cls]
@classmethod
def add_custom_tokens(cls, tokenizer):
tokenizer.add_tokens(cls.custom_tokens())
_SEGMENT_START = START_SEGMENT_TEMPLATE.format(r'(?P<category>\w+)')
_SEGMENT_END = END_SEGMENT_TEMPLATE.format(r'\w+')
SEGMENT_MATCH_RE = fr'{_SEGMENT_START}\s*(?P<text>.*?)\s*(?:{_SEGMENT_END}|$)'
def extract_sponsor_matches(text):
if CustomTokens.NO_SEGMENT.value in text:
return []
return re_findall(SEGMENT_MATCH_RE, text)
@dataclass
class DatasetArguments:
data_dir: Optional[str] = field(
default='data',
metadata={
'help': 'The directory which stores train, test and/or validation data.'
},
)
processed_file: Optional[str] = field(
default='segments.json',
metadata={
'help': 'Processed data file'
},
)
processed_database: Optional[str] = field(
default='processed_database.json',
metadata={
'help': 'Processed database file'
},
)
dataset_cache_dir: Optional[str] = field(
default=None,
metadata={
'help': 'Where to store the cached datasets'
},
)
@dataclass
class OutputArguments:
output_dir: str = field(
default='out',
metadata={
'help': 'The output directory where the model predictions and checkpoints will be written to and read from.'
},
)
checkpoint: Optional[str] = field(
default=None,
metadata={
'help': 'Choose the checkpoint/model to train from or test with. Defaults to the latest checkpoint found in `output_dir`.'
},
)
models_dir: str = field(
default='models',
metadata={
'help': 'The output directory where the model predictions and checkpoints will be written to and read from.'
},
)
# classifier_dir: str = field(
# default='out',
# metadata={
# 'help': 'The output directory where the model predictions and checkpoints will be written to and read from.'
# },
# )
def seed_factory():
return time_ns() % (2**32 - 1)
@dataclass
class GeneralArguments:
seed: Optional[int] = field(default_factory=seed_factory, metadata={
'help': 'Set seed for deterministic training and testing. By default, it uses the current time (results in essentially random results).'
})
no_cuda: bool = field(default=False, metadata={
'help': 'Do not use CUDA even when it is available'})
def __post_init__(self):
random.seed(self.seed)
np.random.seed(self.seed)
torch.manual_seed(self.seed)
torch.cuda.manual_seed_all(self.seed)
def seconds_to_time(seconds, remove_leading_zeroes=False):
fractional = round(seconds % 1, 3)
fractional = '' if fractional == 0 else str(fractional)[1:]
h, remainder = divmod(abs(int(seconds)), 3600)
m, s = divmod(remainder, 60)
hms = f'{h:02}:{m:02}:{s:02}'
if remove_leading_zeroes:
hms = re.sub(r'^0(?:0:0?)?', '', hms)
return f"{'-' if seconds < 0 else ''}{hms}{fractional}"
def reset():
torch.clear_autocast_cache()
torch.cuda.empty_cache()
gc.collect()
print(torch.cuda.memory_summary(device=None, abbreviated=False))
def load_datasets(dataset_args):
print('Reading datasets')
data_files = {}
if dataset_args.train_file is not None:
data_files['train'] = os.path.join(
dataset_args.data_dir, dataset_args.train_file)
if dataset_args.validation_file is not None:
data_files['validation'] = os.path.join(
dataset_args.data_dir, dataset_args.validation_file)
if dataset_args.test_file is not None:
data_files['test'] = os.path.join(
dataset_args.data_dir, dataset_args.test_file)
return load_dataset('json', data_files=data_files, cache_dir=dataset_args.dataset_cache_dir)
@dataclass
class CustomTrainingArguments(OutputArguments, TrainingArguments):
seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed']
num_train_epochs: float = field(
default=1, metadata={'help': 'Total number of training epochs to perform.'})
save_steps: int = field(default=5000, metadata={
'help': 'Save checkpoint every X updates steps.'})
eval_steps: int = field(default=5000, metadata={
'help': 'Run an evaluation every X steps.'})
logging_steps: int = field(default=5000, metadata={
'help': 'Log every X updates steps.'})
# do_eval: bool = field(default=False, metadata={
# 'help': 'Whether to run eval on the dev set.'})
# do_predict: bool = field(default=False, metadata={
# 'help': 'Whether to run predictions on the test set.'})
per_device_train_batch_size: int = field(
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'}
)
per_device_eval_batch_size: int = field(
default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'}
)
# report_to: Optional[List[str]] = field(
# default=None, metadata={"help": "The list of integrations to report the results and logs to."}
# )
evaluation_strategy: str = field(
default='steps',
metadata={
'help': 'The evaluation strategy to use.',
'choices': ['no', 'steps', 'epoch']
},
)
# evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
# The evaluation strategy to adopt during training. Possible values are:
# * :obj:`"no"`: No evaluation is done during training.
# * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
# * :obj:`"epoch"`: Evaluation is done at the end of each epoch.
logging.basicConfig()
logger = logging.getLogger(__name__)
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
handlers=[logging.StreamHandler(sys.stdout)],
)
def get_last_checkpoint(training_args):
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir:
last_checkpoint = glc(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.'
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
)
return last_checkpoint
def train_from_checkpoint(trainer, last_checkpoint, training_args):
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
return train_result
|