Joshua Lochner commited on
Commit
09cabec
·
1 Parent(s): e3d3d3f

Fix conflicting `--no_cuda` argument

Browse files
Files changed (5) hide show
  1. src/evaluate.py +2 -2
  2. src/model.py +0 -2
  3. src/predict.py +5 -6
  4. src/shared.py +2 -0
  5. src/train.py +1 -1
src/evaluate.py CHANGED
@@ -138,7 +138,7 @@ def main():
138
  GeneralArguments
139
  ))
140
 
141
- evaluation_args, dataset_args, segmentation_args, classifier_args, _ = hf_parser.parse_args_into_dataclasses()
142
 
143
  # Load labelled data:
144
  final_path = os.path.join(
@@ -150,7 +150,7 @@ def main():
150
  return
151
 
152
  model, tokenizer = get_model_tokenizer(
153
- evaluation_args.model_path, evaluation_args.cache_dir, evaluation_args.no_cuda)
154
 
155
  with open(final_path) as fp:
156
  final_data = json.load(fp)
 
138
  GeneralArguments
139
  ))
140
 
141
+ evaluation_args, dataset_args, segmentation_args, classifier_args, general_args = hf_parser.parse_args_into_dataclasses()
142
 
143
  # Load labelled data:
144
  final_path = os.path.join(
 
150
  return
151
 
152
  model, tokenizer = get_model_tokenizer(
153
+ evaluation_args.model_path, evaluation_args.cache_dir, general_args.no_cuda)
154
 
155
  with open(final_path) as fp:
156
  final_data = json.load(fp)
src/model.py CHANGED
@@ -23,8 +23,6 @@ class ModelArguments:
23
  'help': 'Path to pretrained model or model identifier from huggingface.co/models'
24
  }
25
  )
26
- no_cuda: bool = field(default=False, metadata={
27
- 'help': 'Do not use CUDA even when it is available'})
28
 
29
  # config_name: Optional[str] = field( # TODO remove?
30
  # default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
 
23
  'help': 'Path to pretrained model or model identifier from huggingface.co/models'
24
  }
25
  )
 
 
26
 
27
  # config_name: Optional[str] = field( # TODO remove?
28
  # default=None, metadata={'help': 'Pretrained config name or path if not the same as model_name'}
src/predict.py CHANGED
@@ -10,7 +10,7 @@ import logging
10
  import os
11
  import itertools
12
  from utils import re_findall
13
- from shared import CustomTokens, START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE, OutputArguments, seconds_to_time
14
  from typing import Optional
15
  from segment import (
16
  generate_segments,
@@ -115,8 +115,6 @@ class InferenceArguments:
115
  output_as_json: bool = field(default=False, metadata={
116
  'help': 'Output evaluations as JSON'})
117
 
118
- no_cuda: bool = ModelArguments.__dataclass_fields__['no_cuda']
119
-
120
  def __post_init__(self):
121
  # Try to load model from latest checkpoint
122
  if self.model_path is None:
@@ -398,9 +396,10 @@ def main():
398
  hf_parser = HfArgumentParser((
399
  PredictArguments,
400
  SegmentationArguments,
401
- ClassifierArguments
 
402
  ))
403
- predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()
404
 
405
  if not predict_args.video_ids:
406
  logger.error(
@@ -408,7 +407,7 @@ def main():
408
  return
409
 
410
  model, tokenizer = get_model_tokenizer(
411
- predict_args.model_path, predict_args.cache_dir, predict_args.no_cuda)
412
 
413
  for video_id in predict_args.video_ids:
414
  video_id = video_id.strip()
 
10
  import os
11
  import itertools
12
  from utils import re_findall
13
+ from shared import CustomTokens, START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE, GeneralArguments, OutputArguments, seconds_to_time
14
  from typing import Optional
15
  from segment import (
16
  generate_segments,
 
115
  output_as_json: bool = field(default=False, metadata={
116
  'help': 'Output evaluations as JSON'})
117
 
 
 
118
  def __post_init__(self):
119
  # Try to load model from latest checkpoint
120
  if self.model_path is None:
 
396
  hf_parser = HfArgumentParser((
397
  PredictArguments,
398
  SegmentationArguments,
399
+ ClassifierArguments,
400
+ GeneralArguments
401
  ))
402
+ predict_args, segmentation_args, classifier_args, general_args = hf_parser.parse_args_into_dataclasses()
403
 
404
  if not predict_args.video_ids:
405
  logger.error(
 
407
  return
408
 
409
  model, tokenizer = get_model_tokenizer(
410
+ predict_args.model_path, predict_args.cache_dir, general_args.no_cuda)
411
 
412
  for video_id in predict_args.video_ids:
413
  video_id = video_id.strip()
src/shared.py CHANGED
@@ -99,6 +99,8 @@ class GeneralArguments:
99
  seed: Optional[int] = field(default_factory=seed_factory, metadata={
100
  'help': 'Set seed for deterministic training and testing. By default, it uses the current time (results in essentially random results).'
101
  })
 
 
102
 
103
  def __post_init__(self):
104
  random.seed(self.seed)
 
99
  seed: Optional[int] = field(default_factory=seed_factory, metadata={
100
  'help': 'Set seed for deterministic training and testing. By default, it uses the current time (results in essentially random results).'
101
  })
102
+ no_cuda: bool = field(default=False, metadata={
103
+ 'help': 'Do not use CUDA even when it is available'})
104
 
105
  def __post_init__(self):
106
  random.seed(self.seed)
src/train.py CHANGED
@@ -297,7 +297,7 @@ def main():
297
 
298
  from model import get_model_tokenizer
299
  model, tokenizer = get_model_tokenizer(
300
- model_args.model_name_or_path, model_args.cache_dir, model_args.no_cuda)
301
  # max_tokenizer_length = model.config.d_model
302
 
303
  # Preprocessing the datasets.
 
297
 
298
  from model import get_model_tokenizer
299
  model, tokenizer = get_model_tokenizer(
300
+ model_args.model_name_or_path, model_args.cache_dir, training_args.no_cuda)
301
  # max_tokenizer_length = model.config.d_model
302
 
303
  # Preprocessing the datasets.