Libra / libra /eval /radiology_report.py
X-iZhang's picture
Upload 27 files
23c9ef8 verified
raw
history blame
7.08 kB
import argparse
import json
import os
import re
import sys
import evaluate
import numpy as np
import pandas as pd
from tqdm import tqdm
from libra.eval import temporal_f1_score
# Pre-load metrics
bertscore_metric = evaluate.load("bertscore")
rouge_metric = evaluate.load('rouge')
bleu_metric = evaluate.load("bleu")
meteor_metric = evaluate.load('meteor')
def clean_text(text: str) -> str:
"""
Perform basic cleanup of text by removing newlines, dashes, and some special patterns.
"""
text = re.sub(r'\n+', ' ', text)
text = re.sub(r'[_-]+', ' ', text)
text = re.sub(r'\(___, __, __\)', '', text)
text = re.sub(r'---, ---, ---', '', text)
text = re.sub(r'\(__, __, ___\)', '', text)
text = re.sub(r'[_-]+', ' ', text)
text = re.sub(r'[^\w\s.,:;()\-]', '', text)
text = re.sub(r'\s{2,}', ' ', text).strip()
return text
def load_json(path: str) -> list:
"""
Load a JSONL file and return a list of parsed objects.
Each line should be a valid JSON object.
"""
content = []
with open(path, 'r', encoding='utf-8') as file:
for line in file:
content.append(json.loads(line))
return content
def extract_sections(data: list) -> list:
"""
Extract relevant text sections (e.g., findings, impression, text)
from a list of JSON objects and clean each item.
"""
sections_list = []
for item in data:
if 'reference' in item:
cleaned_text = clean_text(item['reference'].lower())
sections_list.append(cleaned_text)
elif 'findings' in item:
cleaned_text = clean_text(item['findings'].lower())
sections_list.append(cleaned_text)
elif 'impression' in item:
cleaned_text = clean_text(item['impression'].lower())
sections_list.append(cleaned_text)
elif 'text' in item:
cleaned_text = clean_text(item['text'].lower())
sections_list.append(cleaned_text)
return sections_list
def append_results_to_csv(results: dict, model_name: str, csv_path: str) -> None:
"""
Convert the results dictionary into a DataFrame and append it to a CSV file.
Inserts 'Model Name' at the first column if it doesn't exist.
Creates a new CSV if it doesn't exist, otherwise appends.
"""
df = pd.DataFrame([results])
df.insert(0, "Model Name", model_name)
header = not os.path.isfile(csv_path) # If file doesn't exist, write the header
df.to_csv(csv_path, mode='a', header=header, index=False)
def evaluate_report(
references: str,
predictions: str,
) -> dict:
"""
Evaluate the model outputs against reference texts using multiple metrics:
- BLEU (1–4)
- METEOR
- ROUGE-L
- BERTScore (F1)
- Temporal F1
Returns a dictionary of computed metrics.
"""
# Load data
references_data = load_json(references)
predictions_data = load_json(predictions)
# Basic validation: question_id alignment
gt_ids = [item['question_id'] for item in references_data]
pred_ids = [item['question_id'] for item in predictions_data]
assert gt_ids == pred_ids, "Please make sure predictions and references are perfectly matched by question_id."
# Extract text sections
references_list = extract_sections(references_data)
predictions_list = extract_sections(predictions_data)
# Calculate metrics
with tqdm(total=8, desc="Calculating metrics") as pbar:
# BLEU-1
bleu1 = bleu_metric.compute(
predictions=predictions_list,
references=references_list,
max_order=1
)['bleu']
print(f"BLEU-1 Score: {round(bleu1 * 100, 2)}")
pbar.update(1)
# BLEU-2
bleu2 = bleu_metric.compute(
predictions=predictions_list,
references=references_list,
max_order=2
)['bleu']
print(f"BLEU-2 Score: {round(bleu2 * 100, 2)}")
pbar.update(1)
# BLEU-3
bleu3 = bleu_metric.compute(
predictions=predictions_list,
references=references_list,
max_order=3
)['bleu']
print(f"BLEU-3 Score: {round(bleu3 * 100, 2)}")
pbar.update(1)
# BLEU-4
bleu4 = bleu_metric.compute(
predictions=predictions_list,
references=references_list,
max_order=4
)['bleu']
print(f"BLEU-4 Score: {round(bleu4 * 100, 2)}")
pbar.update(1)
# ROUGE-L
rougel = rouge_metric.compute(
predictions=predictions_list,
references=references_list
)['rougeL']
print(f"ROUGE-L Score: {round(rougel * 100, 2)}")
pbar.update(1)
# METEOR
meteor = meteor_metric.compute(
predictions=predictions_list,
references=references_list
)['meteor']
print(f"METEOR Score: {round(meteor * 100, 2)}")
pbar.update(1)
# BERTScore (mean F1)
bert_f1 = bertscore_metric.compute(
predictions=predictions_list,
references=references_list,
model_type='distilbert-base-uncased'
)['f1']
bert_score = float(np.mean(bert_f1))
print(f"Bert Score: {round(bert_score * 100, 2)}")
pbar.update(1)
# Temporal F1
tem_f1 = temporal_f1_score(
predictions=predictions_list,
references=references_list
)["f1"]
print(f"Temporal F1 Score: {round(tem_f1 * 100, 2)}")
pbar.update(1)
return {
'BLEU1': round(bleu1 * 100, 2),
'BLEU2': round(bleu2 * 100, 2),
'BLEU3': round(bleu3 * 100, 2),
'BLEU4': round(bleu4 * 100, 2),
'METEOR': round(meteor * 100, 2),
'ROUGE-L': round(rougel * 100, 2),
'Bert_score': round(bert_score * 100, 2),
'Temporal_entity_score': round(tem_f1 * 100, 2)
}
def main():
"""
Parse arguments, compute evaluation metrics, and append the results to a CSV file.
"""
parser = argparse.ArgumentParser(
description='Evaluation for Libra Generated Outputs'
)
parser.add_argument('--references', type=str, required=True,
help='Path to the ground truth file (JSONL).')
parser.add_argument('--predictions', type=str, required=True,
help='Path to the prediction file (JSONL).')
parser.add_argument('--model-name', type=str, required=True,
help='Unique model identifier for tracking in the results CSV.')
parser.add_argument('--save-to-csv', type=str, required=True,
help='Path of the CSV file where results will be saved/appended.')
args = parser.parse_args()
# Calculate metrics
scores_results = evaluate_report(
references=args.references,
predictions=args.predictions
)
# Append results to CSV
append_results_to_csv(scores_results, args.model_name, args.save_to_csv)
if __name__ == "__main__":
main()