File size: 7,080 Bytes
23c9ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import json
import os
import re
import sys

import evaluate
import numpy as np
import pandas as pd
from tqdm import tqdm

from libra.eval import temporal_f1_score

# Pre-load metrics
bertscore_metric = evaluate.load("bertscore")
rouge_metric = evaluate.load('rouge')
bleu_metric = evaluate.load("bleu")
meteor_metric = evaluate.load('meteor')


def clean_text(text: str) -> str:
    """
    Perform basic cleanup of text by removing newlines, dashes, and some special patterns.
    """
    text = re.sub(r'\n+', ' ', text)
    text = re.sub(r'[_-]+', ' ', text)
    text = re.sub(r'\(___, __, __\)', '', text)
    text = re.sub(r'---, ---, ---', '', text)
    text = re.sub(r'\(__, __, ___\)', '', text)
    text = re.sub(r'[_-]+', ' ', text)
    text = re.sub(r'[^\w\s.,:;()\-]', '', text)
    text = re.sub(r'\s{2,}', ' ', text).strip()
    return text


def load_json(path: str) -> list:
    """
    Load a JSONL file and return a list of parsed objects.
    Each line should be a valid JSON object.
    """
    content = []
    with open(path, 'r', encoding='utf-8') as file:
        for line in file:
            content.append(json.loads(line))
    return content


def extract_sections(data: list) -> list:
    """
    Extract relevant text sections (e.g., findings, impression, text)
    from a list of JSON objects and clean each item.
    """
    sections_list = []
    for item in data:
        if 'reference' in item:
            cleaned_text = clean_text(item['reference'].lower())
            sections_list.append(cleaned_text)
        elif 'findings' in item:
            cleaned_text = clean_text(item['findings'].lower())
            sections_list.append(cleaned_text)
        elif 'impression' in item:
            cleaned_text = clean_text(item['impression'].lower())
            sections_list.append(cleaned_text)
        elif 'text' in item:
            cleaned_text = clean_text(item['text'].lower())
            sections_list.append(cleaned_text)
    return sections_list


def append_results_to_csv(results: dict, model_name: str, csv_path: str) -> None:
    """
    Convert the results dictionary into a DataFrame and append it to a CSV file.
    Inserts 'Model Name' at the first column if it doesn't exist.
    Creates a new CSV if it doesn't exist, otherwise appends.
    """
    df = pd.DataFrame([results])
    df.insert(0, "Model Name", model_name)

    header = not os.path.isfile(csv_path)  # If file doesn't exist, write the header
    df.to_csv(csv_path, mode='a', header=header, index=False)


def evaluate_report(
    references: str,
    predictions: str,
) -> dict:
    """
    Evaluate the model outputs against reference texts using multiple metrics:
    - BLEU (1–4)
    - METEOR
    - ROUGE-L
    - BERTScore (F1)
    - Temporal F1

    Returns a dictionary of computed metrics.
    """
    # Load data
    references_data = load_json(references)
    predictions_data = load_json(predictions)

    # Basic validation: question_id alignment
    gt_ids = [item['question_id'] for item in references_data]
    pred_ids = [item['question_id'] for item in predictions_data]
    assert gt_ids == pred_ids, "Please make sure predictions and references are perfectly matched by question_id."

    # Extract text sections
    references_list = extract_sections(references_data)
    predictions_list = extract_sections(predictions_data)

    # Calculate metrics
    with tqdm(total=8, desc="Calculating metrics") as pbar:
        # BLEU-1
        bleu1 = bleu_metric.compute(
            predictions=predictions_list, 
            references=references_list, 
            max_order=1
        )['bleu']
        print(f"BLEU-1 Score: {round(bleu1 * 100, 2)}")
        pbar.update(1)

        # BLEU-2
        bleu2 = bleu_metric.compute(
            predictions=predictions_list, 
            references=references_list, 
            max_order=2
        )['bleu']
        print(f"BLEU-2 Score: {round(bleu2 * 100, 2)}")
        pbar.update(1)

        # BLEU-3
        bleu3 = bleu_metric.compute(
            predictions=predictions_list, 
            references=references_list, 
            max_order=3
        )['bleu']
        print(f"BLEU-3 Score: {round(bleu3 * 100, 2)}")
        pbar.update(1)

        # BLEU-4
        bleu4 = bleu_metric.compute(
            predictions=predictions_list, 
            references=references_list, 
            max_order=4
        )['bleu']
        print(f"BLEU-4 Score: {round(bleu4 * 100, 2)}")
        pbar.update(1)

        # ROUGE-L
        rougel = rouge_metric.compute(
            predictions=predictions_list, 
            references=references_list
        )['rougeL']
        print(f"ROUGE-L Score: {round(rougel * 100, 2)}")
        pbar.update(1)

        # METEOR
        meteor = meteor_metric.compute(
            predictions=predictions_list, 
            references=references_list
        )['meteor']
        print(f"METEOR Score: {round(meteor * 100, 2)}")
        pbar.update(1)

        # BERTScore (mean F1)
        bert_f1 = bertscore_metric.compute(
            predictions=predictions_list, 
            references=references_list, 
            model_type='distilbert-base-uncased'
        )['f1']
        bert_score = float(np.mean(bert_f1))
        print(f"Bert Score: {round(bert_score * 100, 2)}")
        pbar.update(1)

        # Temporal F1
        tem_f1 = temporal_f1_score(
            predictions=predictions_list, 
            references=references_list
        )["f1"]
        print(f"Temporal F1 Score: {round(tem_f1 * 100, 2)}")
        pbar.update(1)

    return {
        'BLEU1': round(bleu1 * 100, 2),
        'BLEU2': round(bleu2 * 100, 2),
        'BLEU3': round(bleu3 * 100, 2),
        'BLEU4': round(bleu4 * 100, 2),
        'METEOR': round(meteor * 100, 2),
        'ROUGE-L': round(rougel * 100, 2),
        'Bert_score': round(bert_score * 100, 2),
        'Temporal_entity_score': round(tem_f1 * 100, 2)
    }


def main():
    """
    Parse arguments, compute evaluation metrics, and append the results to a CSV file.
    """
    parser = argparse.ArgumentParser(
        description='Evaluation for Libra Generated Outputs'
    )
    parser.add_argument('--references', type=str, required=True,
                        help='Path to the ground truth file (JSONL).')
    parser.add_argument('--predictions', type=str, required=True,
                        help='Path to the prediction file (JSONL).')
    parser.add_argument('--model-name', type=str, required=True,
                        help='Unique model identifier for tracking in the results CSV.')
    parser.add_argument('--save-to-csv', type=str, required=True,
                        help='Path of the CSV file where results will be saved/appended.')
    args = parser.parse_args()

    # Calculate metrics
    scores_results = evaluate_report(
        references=args.references, 
        predictions=args.predictions
    )

    # Append results to CSV
    append_results_to_csv(scores_results, args.model_name, args.save_to_csv)


if __name__ == "__main__":
    main()