brand-llms / app.py
cyberandy's picture
Update app.py
5ac398b verified
raw
history blame
7.76 kB
import gradio as gr
import requests
from typing import Dict, Tuple, List
import json
from dataclasses import dataclass
from typing import Optional
@dataclass
class Feature:
feature_id: int
activation: float
token: str
position: int
class FeatureState:
def __init__(self):
self.features_by_token = {}
self.expanded_tokens = set()
self.selected_feature = None
def get_features(text: str) -> Dict:
"""Get neural features from the API using the exact website parameters."""
url = "https://www.neuronpedia.org/api/search-with-topk"
payload = {
"modelId": "gemma-2-2b",
"text": text,
"layer": "20-gemmascope-res-16k"
}
try:
response = requests.post(
url,
headers={"Content-Type": "application/json"},
json=payload
)
response.raise_for_status()
return response.json()
except Exception as e:
return None
def format_feature_list(features: List[Feature], token: str, expanded: bool = False) -> str:
"""Format features as HTML list."""
display_features = features if expanded else features[:3]
features_html = ""
for feature in display_features:
features_html += f"""
<div class="feature-card p-4 rounded-lg mb-4 cursor-pointer hover:border-blue-500"
data-feature-id="{feature.feature_id}">
<div class="flex justify-between items-center">
<div>
<span class="font-semibold">Feature {feature.feature_id}</span>
<span class="ml-2 text-gray-600">(Activation: {feature.activation:.2f})</span>
</div>
</div>
</div>
"""
if not expanded and len(features) > 3:
remaining = len(features) - 3
features_html += f"""
<div class="text-center">
<span class="text-blue-500 text-sm">{remaining} more features available</span>
</div>
"""
return features_html
def format_dashboard(feature: Feature) -> str:
"""Format the dashboard HTML for a selected feature."""
if not feature:
return ""
return f"""
<div class="dashboard-container p-4">
<h3 class="text-lg font-semibold mb-4 text-gray-900">
Feature {feature.feature_id} Dashboard (Activation: {feature.activation:.2f})
</h3>
<iframe
src="https://www.neuronpedia.org/gemma-2-2b/20-gemmascope-res-16k/{feature.feature_id}?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300"
width="100%"
height="600"
frameborder="0"
class="rounded-lg"
></iframe>
</div>
"""
def process_features(data: Dict) -> Dict[str, List[Feature]]:
"""Process API response into features grouped by token."""
features_by_token = {}
for result in data.get('results', []):
if result['token'] == '<bos>':
continue
token = result['token']
features = []
for idx, feature in enumerate(result.get('top_features', [])):
features.append(Feature(
feature_id=feature['feature_index'],
activation=feature['activation_value'],
token=token,
position=idx
))
features_by_token[token] = features
return features_by_token
css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
body {
font-family: 'Open Sans', sans-serif !important;
}
.feature-card {
border: 1px solid #e0e5ff;
background-color: #ffffff;
transition: all 0.2s ease;
}
.feature-card:hover {
border-color: #3452db;
box-shadow: 0 2px 4px rgba(52, 82, 219, 0.1);
}
.dashboard-container {
border: 1px solid #e0e5ff;
border-radius: 8px;
background-color: #ffffff;
}
"""
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.Color(
name="blue",
c50="#eef1ff",
c100="#e0e5ff",
c200="#c3cbff",
c300="#a5b2ff",
c400="#8798ff",
c500="#6a7eff",
c600="#3452db",
c700="#2a41af",
c800="#1f3183",
c900="#152156",
c950="#0a102b",
)
)
def analyze_features(text: str, state: Optional[Dict] = None) -> Tuple[str, Dict]:
"""Main analysis function that processes text and returns formatted output."""
if not text:
return "", None
data = get_features(text)
if not data:
return "Error analyzing text", None
# Process features and build state
features_by_token = process_features(data)
# Initialize state if needed
if not state:
state = {
'features_by_token': features_by_token,
'expanded_tokens': set(),
'selected_feature': None
}
# Select first feature as default
first_token = next(iter(features_by_token))
if features_by_token[first_token]:
state['selected_feature'] = features_by_token[first_token][0]
# Build output HTML
output = []
for token, features in features_by_token.items():
expanded = token in state['expanded_tokens']
token_html = f"<h2 class='text-xl font-bold mb-4'>Token: {token}</h2>"
features_html = format_feature_list(features, token, expanded)
output.append(f"<div class='mb-6'>{token_html}{features_html}</div>")
# Add dashboard if a feature is selected
if state['selected_feature']:
output.append(format_dashboard(state['selected_feature']))
return "\n".join(output), state
def toggle_expansion(token: str, state: Dict) -> Tuple[str, Dict]:
"""Toggle expansion state for a token's features."""
if token in state['expanded_tokens']:
state['expanded_tokens'].remove(token)
else:
state['expanded_tokens'].add(token)
output_html, state = analyze_features(None, state)
return output_html, state
def select_feature(feature_id: int, state: Dict) -> Tuple[str, Dict]:
"""Select a feature and update the dashboard."""
for features in state['features_by_token'].values():
for feature in features:
if feature.feature_id == feature_id:
state['selected_feature'] = feature
break
output_html, state = analyze_features(None, state)
return output_html, state
def create_interface():
state = gr.State({})
with gr.Blocks(theme=theme, css=css) as interface:
gr.Markdown("# Neural Feature Analyzer", elem_classes="text-2xl font-bold mb-2")
gr.Markdown("*Analyze text using Gemma's interpretable neural features*", elem_classes="text-gray-600 mb-6")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
lines=5,
placeholder="Enter text to analyze...",
label="Input Text"
)
analyze_btn = gr.Button("Analyze Features", variant="primary")
gr.Examples(
examples=["WordLift", "Think Different", "Just Do It"],
inputs=input_text
)
with gr.Column(scale=2):
output = gr.HTML()
# Event handlers
analyze_btn.click(
fn=analyze_features,
inputs=[input_text, state],
outputs=[output, state]
)
return interface
if __name__ == "__main__":
create_interface().launch()