Spaces:
Sleeping
Sleeping
File size: 7,764 Bytes
44c881e 8712c90 e53e16b 5ac398b f643580 6465b33 5ac398b a24593e 5ac398b e53e16b 5ac398b 4a2f0f6 5ac398b dce4ae1 5ac398b e53e16b 5ac398b e53e16b 5ac398b 44c881e 5ac398b 5ee5132 44c881e 5ac398b f643580 5ac398b 44c881e 5ac398b 44c881e a24593e 5ac398b f643580 5ac398b f643580 7cdea90 44c881e 5ac398b 44c881e 5ac398b 44c881e e53e16b 5ac398b 44c881e 5ac398b 44c881e 8712c90 44c881e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import requests
from typing import Dict, Tuple, List
import json
from dataclasses import dataclass
from typing import Optional
@dataclass
class Feature:
feature_id: int
activation: float
token: str
position: int
class FeatureState:
def __init__(self):
self.features_by_token = {}
self.expanded_tokens = set()
self.selected_feature = None
def get_features(text: str) -> Dict:
"""Get neural features from the API using the exact website parameters."""
url = "https://www.neuronpedia.org/api/search-with-topk"
payload = {
"modelId": "gemma-2-2b",
"text": text,
"layer": "20-gemmascope-res-16k"
}
try:
response = requests.post(
url,
headers={"Content-Type": "application/json"},
json=payload
)
response.raise_for_status()
return response.json()
except Exception as e:
return None
def format_feature_list(features: List[Feature], token: str, expanded: bool = False) -> str:
"""Format features as HTML list."""
display_features = features if expanded else features[:3]
features_html = ""
for feature in display_features:
features_html += f"""
<div class="feature-card p-4 rounded-lg mb-4 cursor-pointer hover:border-blue-500"
data-feature-id="{feature.feature_id}">
<div class="flex justify-between items-center">
<div>
<span class="font-semibold">Feature {feature.feature_id}</span>
<span class="ml-2 text-gray-600">(Activation: {feature.activation:.2f})</span>
</div>
</div>
</div>
"""
if not expanded and len(features) > 3:
remaining = len(features) - 3
features_html += f"""
<div class="text-center">
<span class="text-blue-500 text-sm">{remaining} more features available</span>
</div>
"""
return features_html
def format_dashboard(feature: Feature) -> str:
"""Format the dashboard HTML for a selected feature."""
if not feature:
return ""
return f"""
<div class="dashboard-container p-4">
<h3 class="text-lg font-semibold mb-4 text-gray-900">
Feature {feature.feature_id} Dashboard (Activation: {feature.activation:.2f})
</h3>
<iframe
src="https://www.neuronpedia.org/gemma-2-2b/20-gemmascope-res-16k/{feature.feature_id}?embed=true&embedexplanation=true&embedplots=true&embedtest=true&height=300"
width="100%"
height="600"
frameborder="0"
class="rounded-lg"
></iframe>
</div>
"""
def process_features(data: Dict) -> Dict[str, List[Feature]]:
"""Process API response into features grouped by token."""
features_by_token = {}
for result in data.get('results', []):
if result['token'] == '<bos>':
continue
token = result['token']
features = []
for idx, feature in enumerate(result.get('top_features', [])):
features.append(Feature(
feature_id=feature['feature_index'],
activation=feature['activation_value'],
token=token,
position=idx
))
features_by_token[token] = features
return features_by_token
css = """
@import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap');
body {
font-family: 'Open Sans', sans-serif !important;
}
.feature-card {
border: 1px solid #e0e5ff;
background-color: #ffffff;
transition: all 0.2s ease;
}
.feature-card:hover {
border-color: #3452db;
box-shadow: 0 2px 4px rgba(52, 82, 219, 0.1);
}
.dashboard-container {
border: 1px solid #e0e5ff;
border-radius: 8px;
background-color: #ffffff;
}
"""
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.Color(
name="blue",
c50="#eef1ff",
c100="#e0e5ff",
c200="#c3cbff",
c300="#a5b2ff",
c400="#8798ff",
c500="#6a7eff",
c600="#3452db",
c700="#2a41af",
c800="#1f3183",
c900="#152156",
c950="#0a102b",
)
)
def analyze_features(text: str, state: Optional[Dict] = None) -> Tuple[str, Dict]:
"""Main analysis function that processes text and returns formatted output."""
if not text:
return "", None
data = get_features(text)
if not data:
return "Error analyzing text", None
# Process features and build state
features_by_token = process_features(data)
# Initialize state if needed
if not state:
state = {
'features_by_token': features_by_token,
'expanded_tokens': set(),
'selected_feature': None
}
# Select first feature as default
first_token = next(iter(features_by_token))
if features_by_token[first_token]:
state['selected_feature'] = features_by_token[first_token][0]
# Build output HTML
output = []
for token, features in features_by_token.items():
expanded = token in state['expanded_tokens']
token_html = f"<h2 class='text-xl font-bold mb-4'>Token: {token}</h2>"
features_html = format_feature_list(features, token, expanded)
output.append(f"<div class='mb-6'>{token_html}{features_html}</div>")
# Add dashboard if a feature is selected
if state['selected_feature']:
output.append(format_dashboard(state['selected_feature']))
return "\n".join(output), state
def toggle_expansion(token: str, state: Dict) -> Tuple[str, Dict]:
"""Toggle expansion state for a token's features."""
if token in state['expanded_tokens']:
state['expanded_tokens'].remove(token)
else:
state['expanded_tokens'].add(token)
output_html, state = analyze_features(None, state)
return output_html, state
def select_feature(feature_id: int, state: Dict) -> Tuple[str, Dict]:
"""Select a feature and update the dashboard."""
for features in state['features_by_token'].values():
for feature in features:
if feature.feature_id == feature_id:
state['selected_feature'] = feature
break
output_html, state = analyze_features(None, state)
return output_html, state
def create_interface():
state = gr.State({})
with gr.Blocks(theme=theme, css=css) as interface:
gr.Markdown("# Neural Feature Analyzer", elem_classes="text-2xl font-bold mb-2")
gr.Markdown("*Analyze text using Gemma's interpretable neural features*", elem_classes="text-gray-600 mb-6")
with gr.Row():
with gr.Column(scale=1):
input_text = gr.Textbox(
lines=5,
placeholder="Enter text to analyze...",
label="Input Text"
)
analyze_btn = gr.Button("Analyze Features", variant="primary")
gr.Examples(
examples=["WordLift", "Think Different", "Just Do It"],
inputs=input_text
)
with gr.Column(scale=2):
output = gr.HTML()
# Event handlers
analyze_btn.click(
fn=analyze_features,
inputs=[input_text, state],
outputs=[output, state]
)
return interface
if __name__ == "__main__":
create_interface().launch() |