File size: 1,294 Bytes
419e174
 
c80b484
419e174
 
 
 
 
 
 
 
aff9d39
 
419e174
 
 
bddad24
 
 
419e174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
from transformers import pipeline
import time

def sentiment(summary):
    pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics")
    label = pipe(summary)[0]['label']
    return label


def main():
    dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"}
    st.set_page_config(page_title="Your Finance news", page_icon="📰")
    st.header("Summarize Your Finance News and Analyze Sentiment")
    text=st.text_input('Input your Finance news(Max lenth<=3000): ',max_chars=3000)
    if isinstance(text,str):
        #st.text('Your Finance news: ')
        st.write('Your Finance news: ',str(text))
        time.sleep(2)
        #Stage 1: Text Summarization
        st.text('Processing Finance News Summarization...')
        text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer")
        summary=text_summarize(text)[0]['summary_text']
        st.write(summary)

        #Stage 2: Sentiment Analytics
        st.text('Processing Sentiment Analytics...')
        label = sentiment(summary)
        label=dicts[label]
        st.text('The sentiment of finance news is: ')
        st.write(label)

if __name__ == "__main__":
    main()